A383433 Number of king permutations on n elements avoiding the mesh pattern (12, {(0,0),(0,2),(1,0),(1,2),(2,1)}).
1, 1, 0, 0, 2, 12, 76, 556, 4592, 42328, 431184, 4812936, 58440200, 767098296, 10826066776, 163496360680, 2631146363384, 44953977477160, 812713132751832, 15501004918724712, 311078390317974872, 6552553451281418472, 144550752700158416920, 3332886257051337065128, 80168754370190239256408
Offset: 0
A383434 Number of king permutations on n elements avoiding the mesh pattern (12, {(0,2),(1,0),(1,1),(2,0),(2,1)}).
1, 1, 0, 0, 2, 10, 68, 500, 4170, 38730, 397172, 4459116, 54421082, 717571442, 10167743668, 154104395348, 2487968793386, 42630767594522, 772730550801940, 14773475294401180, 297121458577213850, 6270996358146824738, 138591948457411817684, 3200867594024256790020, 77112844928711640695594
Offset: 0
Comments
A permutation p(1)p(2)...p(n) is a king permutation if |p(i+1)-p(i)|>1 for each 0
Examples
For n = 4 the a(4) = 2 solutions are the two permutations 2413 and 3142. For n = 5 the a(5) = 10 solutions are these 10 permutations: 24153, 25314, 31524, 35142, 35241, 41352, 42513, 42531, 52413, 53142.
Links
- Dan Li and Philip B. Zhang, Distributions of mesh patterns of short lengths on king permutations, arXiv:2411.18131 [math.CO], 2024. See Theorem 4.8 at page 23.
Crossrefs
Formula
G.f.: 1 + t + 1/(1 + t) - 1/A(t) where A(t)=Sum_{n >= 0} n!*t^n*(1-t)^n/(1+t)^n is the g.f. for king permutations given by A002464.
A383407 Number of king permutations on n elements avoiding the mesh pattern (12, {(0,1),(0,2),(1,0),(1,2),(2,0),(2,1)}).
1, 1, 0, 0, 2, 14, 88, 636, 5174, 47122, 475124, 5257936, 63380706, 826813990, 11606987816, 174484661916, 2796700455414, 47613243806514, 858079661762692, 16320191491499712, 326687622910353650, 6865552738575268502, 151139376627154723752, 3478151378775992816412, 83516519907235226131286
Offset: 0
Comments
A permutation p(1)p(2)...p(n) is a king permutation if |p(i+1)-p(i)|>1 for each 0
Examples
For n = 4 the a(4) = 2 solutions are the two permutations 2413 and 3142. For n = 5 the a(5) = 14 solutions are these 14 permutations: 13524, 14253, 24135, 24153, 25314, 31425, 31524, 35142, 35241, 41352, 42513, 42531, 52413, 53142.
Links
- Dan Li and Philip B. Zhang, Distributions of mesh patterns of short lengths on king permutations, arXiv:2411.18131 [math.CO], 2024. See Theorem 4.5 at page 18.
Formula
G.f.: (1 + t)*(1 + t + t*(2 + t)*A(t))*A(t)/(1 + t + t*A(t))^2 where A(t)=Sum_{n >= 0} n!*t^n*(1-t)^n/(1+t)^n is the g.f. for king permutations given by A002464.
A383408 Number of king permutations on n elements avoiding the mesh pattern (12, {(0,0),(0,2),(1,0),(1,1),(1,2),(2,1)}).
1, 1, 0, 0, 2, 14, 88, 632, 5152, 46972, 474008, 5248616, 63294680, 825940168, 11597278752, 174367336624, 2795167052832, 47591679875632, 857754907053056, 16314976128578752, 326598651690933216, 6863945954213702816, 151108752072042907968, 3477537076217415673344, 83503583639127861347392
Offset: 0
Comments
A permutation p(1)p(2)...p(n) is a king permutation if |p(i+1)-p(i)|>1 for each 0
Examples
For n = 4 the a(4) = 2 solutions are the two permutations 2413 and 3142. For n = 5 the a(5) = 14 solutions are these 14 permutations: 13524, 14253, 24135, 24153, 25314, 31425, 31524, 35142, 35241, 41352, 42513, 42531, 52413, 53142.
Links
- Dan Li and Philip B. Zhang, Distributions of mesh patterns of short lengths on king permutations, arXiv:2411.18131 [math.CO], 2024. See Theorem 4.6 at page 19.
Formula
G.f.: (1 + t)*(A(t) - t)/(1 + t*(A(t) - t - 1)) where A(t)=Sum_{n >= 0} n!*t^n*(1-t)^n/(1+t)^n is the g.f. for king permutations given by A002464.
A383406 Number of king permutations on n elements avoiding the mesh pattern (12, {(0,0),(0,1),(1,0),(1,2),(2,1),(2,2)}).
1, 1, 0, 0, 2, 14, 88, 632, 5152, 46976, 474056, 5249064, 63298724, 825977620, 11597642568, 174371083288, 2795208188972, 47592162832412, 857760977798888, 16315057829100968, 326599827759568812, 6863964030561807340, 151109048051281532488, 3477542225297684400056, 83503678542689445133052
Offset: 0
Comments
A permutation p(1)p(2)...p(n) is a king permutation if |p(i+1)-p(i)|>1 for each 0
Examples
For n = 4 the a(4) = 2 solutions are the two permutations 2413 and 3142. For n = 5 the a(5) = 14 solutions are these 14 permutations: 13524, 14253, 24135, 24153, 25314, 31425, 31524, 35142, 35241, 41352, 42513, 42531, 52413, 53142.
Links
- Dan Li and Philip B. Zhang, Distributions of mesh patterns of short lengths on king permutations, arXiv:2411.18131 [math.CO], 2024. See Theorem 4.4 at page 17.
Formula
G.f.: (1 + t)^2 *A(t)/((1 + t)^2 + t^2*(A(t) - t - 1)*A(t)) where A(t)=Sum_{n >= 0} n!*t^n*(1-t)^n/(1+t)^n is the g.f. for king permutations given by A002464.
A383107 Number of king permutations on n elements avoiding the mesh pattern (12, {(0,0),(0,1),(0,2),(1,0),(1,2),(2,0),(2,1)}).
1, 1, 0, 0, 2, 14, 88, 636, 5174, 47122, 475128, 5257976, 63381078, 826817350, 11607019144, 174484968604, 2796703640190, 47613279070594, 858080079253440, 16320196781972904, 326687694661023774, 6865553778933359142, 151139392725808178080, 3478151644016630307452, 83516524547918673461238
Offset: 0
Comments
A permutation p(1)p(2)...p(n) is a king permutation if |p(i+1)-p(i)|>1 for each 0
Examples
For n = 4 the a(4) = 2 solutions are the two permutations 2413 and 3142. For n = 5 the a(5) = 14 solutions are these 14 permutations: 13524, 14253, 24135, 24153, 25314, 31425, 31524, 35142, 35241, 41352, 42513, 42531, 52413, 53142.
Links
- Dan Li and Philip B. Zhang, Distributions of mesh patterns of short lengths on king permutations, arXiv:2411.18131 [math.CO], 2024. See Theorem 4.2 at page 15.
Formula
G.f.: (1/(1 + t) + t*(1 + t)/(1 + t + t*A(t)))*A(t) where A(t)=Sum_{n >= 0} n!*t^n*(1-t)^n/(1+t)^n is the g.f. for king permutations given by A002464.
A383040 Number of king permutations on n elements avoiding the mesh pattern (12, {(0,1),(0,2),(1,0),(2,0)}).
1, 1, 0, 0, 2, 12, 78, 568, 4674, 42944, 436314, 4860020, 58914870, 772330276, 10888803374, 164310553184, 2642525580218, 45124440536632, 815438318526482, 15547317496485932, 311912067538692126, 6568399090178800988, 144867849880285518694, 3339550150164041194232, 80315480372245746015970
Offset: 0
Comments
A permutation p(1)p(2)...p(n) is a king permutation if |p(i+1)-p(i)|>1 for each 0
Examples
For n = 4 the a(4) = 2 solutions are the two permutations 2413 and 3142. For n = 5 the a(5) = 12 solutions are these 12 permutations: 24135, 24153, 25314, 31425, 31524, 35142, 35241, 41352, 42513, 42531, 52413, 53142.
Links
- Dan Li and Philip B. Zhang, Distributions of mesh patterns of short lengths on king permutations, arXiv:2411.18131 [math.CO], 2024. See Theorem 4.1 at page 13.
Formula
G.f.: (1 + t)^2*A(t)/(1 + t + t*A(t)) where A(t)=Sum_{n >= 0} n!*t^n*(1-t)^n/(1+t)^n is the g.f. for king permutations given by A002464.
A383312 Number of king permutations on n elements avoiding the mesh pattern (12, {(0,1),(0,2),(1,0),(1,1),(2,0),(2,2)}).
1, 1, 0, 0, 2, 14, 86, 624, 5096, 46554, 470446, 5214936, 62943852, 821949042, 11548027442, 173711893048, 2785807179384, 47448884653218, 855436571437710, 16275060021803232, 325872090863707740, 6850004083354211050, 150827444158572339810, 3471582648001267649808, 83371646323922972242776
Offset: 0
Comments
A permutation p(1)p(2)...p(n) is a king permutation if |p(i+1)-p(i)|>1 for each 0
Examples
For n = 4 the a(4) = 2 solutions are the two permutations 2413 and 3142. For n = 5 the a(5) = 14 solutions are these 14 permutations: 13524, 14253, 24135, 24153, 25314, 31425, 31524, 35142, 35241, 41352, 42513, 42531, 52413, 53142.
Links
- Dan Li and Philip B. Zhang, Distributions of mesh patterns of short lengths on king permutations, arXiv:2411.18131 [math.CO], 2024. See Theorem 4.3 at page 16.
Formula
G.f.: (t + 1/(1 + t) - t^2*A(t)^2/((1 + t)*(1 + t + t*A(t))))*A(t) where A(t) = Sum_{n >= 0} n!*t^n*(1-t)^n/(1+t)^n is the g.f. for king permutations given by A002464.
A382645 Number of king permutations on n elements not beginning with the smallest element and not ending with the largest element.
1, 0, 0, 0, 2, 10, 68, 500, 4174, 38774, 397584, 4462848, 54455754, 717909202, 10171232060, 154142811052, 2488421201446, 42636471916622, 772807552752712, 14774586965277816, 297138592463202402, 6271277634164008170, 138596853553771517492, 3200958202120445923684, 77114612783976599209598
Offset: 0
Keywords
Comments
A permutation p(1)p(2)...p(n) is a king permutation if |p(i+1)-p(i)|>1 for each 0
Examples
For n = 4 the a(4) = 2 solutions are the two permutations 2413 and 3142. For n = 5 the a(5) = 10 solutions are these 10 permutations: 24153, 25314, 31524, 35142, 35241, 41352, 42513, 42531, 52413, and 53142.
Links
- Dan Li and Philip B. Zhang, Distributions of mesh patterns of short lengths on king permutations, arXiv:2411.18131 [math.CO], 2024. See formula (3) at page 5.
Programs
-
Mathematica
nmax = 20; CoefficientList[Series[x/(1+x) + Sum[k!*x^k*(1-x)^k/(1+x)^(k+2), {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 04 2025 *)
-
PARI
my(N=30, t='t+O('t^N)); Vec(t/(1+t)+sum(n=0,N,n!*t^n*(1-t)^n/(1+t)^(n+2))) \\ Joerg Arndt, Apr 03 2025
Formula
G.f.: t/(1+t) + Sum_{n >= 0} n!*t^n*(1-t)^n/(1+t)^(n+2).
a(n) ~ exp(-2) * n!. - Vaclav Kotesovec, Apr 04 2025
A382644 Number of king permutations on n elements not beginning with the smallest element.
1, 0, 0, 0, 2, 12, 78, 568, 4674, 42948, 436358, 4860432, 58918602, 772364956, 10889141262, 164314043112, 2642564012498, 45124893118068, 815444024669334, 15547394518030528, 311913179428480218, 6568416226627210572, 144868131187935525662, 3339555055674217441176, 80315570986097045133282
Offset: 0
Comments
A permutation p(1)p(2)...p(n) is a king permutation if |p(i+1)-p(i)|>1 for each 0
Examples
For n = 4 the a(4) = 2 solutions are the two permutations 2413 and 3142. For n = 5 the a(5) = 12 solutions are these 12 permutations: 24135, 24153, 25314, 31425, 31524, 35142, 35241, 41352, 42513, 42531, 52413, and 53142.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..450
- Dan Li and Philip B. Zhang, Distributions of mesh patterns of short lengths on king permutations, arXiv:2411.18131 [math.CO], 2024. See formula (2) at page 5.
Programs
-
Maple
a:= proc(n) option remember; `if`(n<4, [1,0$3][n+1], (n+1)*a(n-1)-(n-3)*(a(n-2)+a(n-3))+(n-2)*a(n-4)) end: seq(a(n), n=0..24); # Alois P. Heinz, Apr 04 2025
-
Mathematica
nmax = 20; CoefficientList[Series[Sum[k!*x^k*(1-x)^k/(1+x)^(k+1), {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 04 2025 *)
-
PARI
my(N=30, t='t+O('t^N)); Vec(sum(n=0,N,n!*t^n*(1-t)^n/(1+t)^(n+1))) \\ Joerg Arndt, Apr 03 2025
Formula
G.f.: Sum_{n >= 0} n!*t^n*(1-t)^n/(1+t)^(n+1).
a(n) = (n+1)*a(n-1) - (n-3)*(a(n-2)+a(n-3)) + (n-2)*a(n-4) for n>=4. - Alois P. Heinz, Apr 04 2025
a(n) ~ exp(-2) * n!. - Vaclav Kotesovec, Apr 04 2025
Comments
Examples
Links
Crossrefs
Formula