cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Eckard Specht

Eckard Specht's wiki page.

Eckard Specht has authored 7 sequences.

A063781 a(n) is the number of pairs of integer quadruples (b_1, b_2, b_3, b_4) and (c_1, c_2, c_3, c_4) satisfying 1 <= b_1 < b_2 < b_3 < b_4 < n, 1 <= c_1 < c_2 < c_3 < c_4 < n, b_i != c_j for all i,j = 1,2,3,4 and Product_{i=1..4} sin(2*Pi*b_i/n) = Product_{i=1..4} sin(2*Pi*c_i/n).

Original entry on oeis.org

0, 1, 3, 4, 5, 9, 18, 17, 41, 29, 84, 45, 167, 66, 253, 93, 386, 126, 534, 166, 782, 214, 966, 270, 1380, 335, 1601, 410, 3053, 495, 2448, 591, 3135, 699, 3546, 819, 4785, 952, 4947, 1099, 8350, 1260, 6660, 1436, 8804, 1628, 8724, 1836, 10620, 2061, 11191
Offset: 8

Author

Eckard Specht, Aug 17 2001

Keywords

Examples

			For n=9, the only solution is (1, 4, 6, 7), (2, 3, 5, 8). - _Sean A. Irvine_, May 30 2023
		

Crossrefs

Cf. A063780.

Extensions

Revised by Sean A. Irvine, May 30 2023

A063780 a(n) is the number of pairs of integer quadruples (b_1, b_2, b_3, b_4) and (c_1, c_2, c_3, c_4) satisfying 1 <= b_1 < b_2 < b_3 < b_4 < n, 1 <= c_1 < c_2 < c_3 < c_4 < n, b_i != c_j for all i,j = 1,2,3,4 and Product_{i=1..4} cos(2*Pi*b_i/n) = Product_{i=1..4} cos(2*Pi*c_i/n).

Original entry on oeis.org

0, 1, 3, 4, 9, 9, 18, 17, 93, 29, 84, 45, 433, 66, 253, 93, 1274, 126, 534, 166, 2940, 214, 1120, 270, 5866, 335, 1601, 410, 11359, 495, 2448, 591, 17371, 699, 3654, 819, 27487, 954, 4947, 1099, 42980, 1260, 6660, 1436, 59356, 1628, 8832, 1836, 82224, 2061
Offset: 8

Author

Eckard Specht, Aug 17 2001

Keywords

Examples

			For n=9, the only solution is (1, 4, 6, 7), (2, 3, 5, 8). - _Sean A. Irvine_, May 30 2023
		

Crossrefs

Cf. A063781.

Extensions

Revised by Sean A. Irvine, May 30 2023

A051657 Experimental values for number of equal circles that are packed into a square for which the density of the packing is strictly increasing.

Original entry on oeis.org

1, 30, 38, 39, 52, 67, 68, 99, 119, 120
Offset: 1

Author

Eckard Specht (eckard.specht(AT)physik.uni-magdeburg.de)

Keywords

References

  • H. T. Croft, K. J. Falconer and R. K. Guy: Unsolved problems in geometry, Springer, New York, 1991.

Extensions

I do not know how many of these values have been rigorously proved. - N. J. A. Sloane

A051660 Experimental values for number of circles in packing equal circles into a square for which there is a loose circle.

Original entry on oeis.org

7, 11, 13, 14, 17, 19, 21, 22, 26, 28, 29, 31, 32, 33, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 81, 82, 83, 84, 85, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100
Offset: 0

Author

Eckard Specht (eckard.specht(AT)physik.uni-magdeburg.de)

Keywords

References

  • H. T. Croft, K. J. Falconer and R. K. Guy: Unsolved problems in geometry, Springer, New York, 1991.

Extensions

I do not know how many of these values have been rigorously proved. - N. J. A. Sloane

A051658 Experimental values for maximal number of contacts between equal circles and the box that are packed into a square.

Original entry on oeis.org

4, 5, 7, 12, 12, 13, 14, 20, 24, 21, 20, 25, 25, 32, 36, 40, 34, 38, 37, 44, 39, 43, 56, 56, 60, 56, 55, 57, 65, 65, 55, 63, 65, 80, 80, 84, 77, 77, 80, 85, 100, 90, 85, 82, 94, 91, 94, 111, 120, 100, 97, 105, 110, 115, 113, 119, 113
Offset: 1

Author

Eckard Specht (eckard.specht(AT)physik.uni-magdeburg.de)

Keywords

References

  • H. T. Croft, K. J. Falconer and R. K. Guy: Unsolved problems in geometry, Springer, New York, 1991.

Extensions

I do not know how many of these values have been rigorously proved. - N. J. A. Sloane

A051659 Experimental values for maximal number of "loose" circles in packing equal circles into a square.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 1, 0, 0, 1, 0, 2, 0, 2, 1, 0, 0, 0, 2, 0, 1, 1, 0, 4, 3, 1, 0, 0, 0, 0, 0, 0, 2, 1, 0, 1, 4, 3, 1
Offset: 1

Author

Eckard Specht (eckard.specht(AT)physik.uni-magdeburg.de)

Keywords

References

  • H. T. Croft, K. J. Falconer and R. K. Guy: Unsolved problems in geometry, Springer, New York, 1991.

Extensions

I do not know how many of these values have been rigorously proved. - N. J. A. Sloane

A051661 Experimental values for number of circles in packing equal circles into a square for which there are no loose circles.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 23, 24, 25, 27, 30, 34, 35, 36, 37, 38, 39, 42, 52, 56, 67, 68, 77, 80, 86, 87, 99, 120, 137, 143, 150, 188
Offset: 0

Author

Eckard Specht (eckard.specht(AT)physik.uni-magdeburg.de)

Keywords

References

  • H. T. Croft, K. J. Falconer and R. K. Guy: Unsolved problems in geometry, Springer, New York, 1991.

Crossrefs

Complement of A051660.

Extensions

I do not know how many of these values have been rigorously proved. - N. J. A. Sloane