cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Emirhan Üçok

Emirhan Üçok's wiki page.

Emirhan Üçok has authored 2 sequences.

A385821 Numbers k such that ceiling((k^2 + 1)/2) is prime.

Original entry on oeis.org

2, 3, 5, 6, 9, 11, 12, 15, 18, 19, 25, 29, 35, 39, 42, 45, 48, 49, 51, 54, 59, 60, 61, 65, 66, 69, 71, 72, 79, 84, 85, 90, 95, 101, 121, 131, 132, 139, 141, 144, 145, 150, 159, 165, 169, 171, 174, 175, 181, 186, 192, 195, 198, 199, 201, 204, 205, 209, 210, 219, 221, 231, 245, 246
Offset: 1

Author

Emirhan Üçok, Jul 09 2025

Keywords

Examples

			5 is a term since ceiling((5^2 + 1)/2) = 13, which is prime.
8 is not a term since ceiling((8^2 + 1)/2) = 33, which is not prime.
		

Crossrefs

Positions of primes in A080827.

Programs

  • Mathematica
    Select[Range[246],PrimeQ[Ceiling[(#^2+1)/2]]&] (* James C. McMahon, Jul 15 2025 *)
  • PARI
    isok(k) = isprime(ceil((k^2+1)/2)); \\ Michel Marcus, Jul 10 2025
  • Python
    from sympy import isprime
    def ok(k): return isprime((k*k + 2) // 2)
    print([k for k in range(1, 247) if ok(k)])
    

A385466 Primes that are at the end of the local maxima in the sequence of consecutive prime gaps.

Original entry on oeis.org

11, 17, 29, 37, 67, 79, 97, 107, 127, 137, 149, 191, 197, 239, 251, 277, 307, 331, 347, 367, 397, 419, 431, 439, 457, 479, 499, 521, 541, 557, 587, 631, 673, 701, 719, 751, 769, 787, 809, 821, 827, 853, 877, 907, 929, 967, 991, 1009, 1019, 1031, 1049, 1061, 1087
Offset: 1

Author

Emirhan Üçok, Jun 29 2025

Keywords

Comments

This sequence lists the larger prime in each consecutive prime pair where the difference is a local maximum in the sequence of prime gaps.
A local maximum occurs when p(n)-p(n-1) < p(n+1)-p(n) > p(n+2)-p(n+1) where p(n) is the n-th prime.

Examples

			The primes 7 and 11 differ by 4, which is larger than the previous gap (2) and the next gap (2). So 11 is in the sequence.
		

Crossrefs

Cf. A001223 (prime gaps), A198696.

Programs

  • Mathematica
    Module[{primes = Prime[Range[1, 200]], diffs, res = {}}, diffs = Differences[primes];
    Do[If[diffs[[i]] > diffs[[i - 1]] && diffs[[i]] > diffs[[i + 1]],
    AppendTo[res, primes[[i + 1]]]], {i, 2, Length[diffs] - 1}]; res]
  • Python
    from sympy import primerange
    primes = list(primerange(2, 2000))
    diffs = [primes[i+1] - primes[i] for i in range(len(primes)-1)]
    local_max_asals = []
    for i in range(1, len(diffs)-1):
        if diffs[i] > diffs[i-1] and diffs[i] > diffs[i+1]:
            local_max_asals.append(primes[i+1])
    print(local_max_asals[:70])

Formula

a(n) = prime(A198696(n)+1). - Michel Marcus, Jul 01 2025