cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Filip Stappers

Filip Stappers's wiki page.

Filip Stappers has authored 2 sequences.

A332751 The number of flips to go from Hamiltonian cycle beta_n to gamma_n in the Cameron graph of size n using Thomason's algorithm.

Original entry on oeis.org

6, 28, 108, 400, 1486, 5516, 20464, 75912, 281590, 1044532, 3874588, 14372392, 53312926, 197758868, 733566368, 2721089680, 10093604838, 37441198412, 138884309516, 515177191104, 1910997283694, 7088649655580, 26294623424272, 97537225651992, 361804397590486, 1342076537863268
Offset: 1

Author

Filip Stappers, Feb 22 2020

Keywords

Crossrefs

Cf. A332750 (number of flips from alpha_n to beta_n, same growth rate).

Programs

  • Mathematica
    LinearRecurrence[{4, -1, 0, -1, 0, -1}, {6, 28, 108, 400, 1486, 5516}, 20] (* Jinyuan Wang, Feb 22 2020 *)
  • PARI
    Vec(2*z*(3 + 2*z + z^2 - 2*z^3) / ((1 - z)*(1 - 3*z - 2*z^2 - 2*z^3 - z^4 - z^5)) + O(z^30)) \\ Colin Barker, Feb 22 2020

Formula

G.f.: 2*z*(3+2*z+z^2-2*z^3) / ((1-z)*(1-3*z-2*z^2-2*z^3-z^4-z^5)).
a(n) = 4*a(n-1) - a(n-2) - a(n-4) - a(n-6) for n>6. - Colin Barker, Feb 22 2020

Extensions

More terms from Jinyuan Wang, Feb 22 2020

A332750 The number of flips to go from Hamiltonian cycle alpha_n to beta_n in the Cameron graph of size n using Thomason's algorithm.

Original entry on oeis.org

11, 65, 265, 1005, 3749, 13927, 51683, 191735, 711243, 2638305, 9786545, 36302213, 134659381, 499505271, 1852863915, 6873009871, 25494729643, 94570101217, 350798151929, 1301249991357, 4826854219941, 17904723777319, 66415748007763, 246362448161159, 913856392265003
Offset: 1

Author

Filip Stappers, Feb 22 2020

Keywords

Crossrefs

Cf. A332751 (number of flips from beta_n to gamma_n, same growth rate).

Programs

  • Mathematica
    LinearRecurrence[{4, -1, 0, -1, 0, -1}, {11, 65, 265, 1005, 3749, 13927}, 20] (* Jinyuan Wang, Feb 22 2020 *)
  • PARI
    Vec(z*(1+z)*(11+10*z+6*z^2+4*z^3+z^4)/((1-z)*(1-3*z-2*z^2-2*z^3-z^4-z^5)) + O(z^30)) \\ Jinyuan Wang, Feb 22 2020

Formula

G.f.: z(1+z)(11+10z+6z^2+4z^3+z^4)/((1-z)(1-3z-2z^2-2z^3-z^4-z^5)).
a(n) = 4*a(n-1) - a(n-2) - a(n-4) - a(n-6) for n>6. - Colin Barker, Feb 22 2020

Extensions

More terms from Jinyuan Wang, Feb 22 2020