cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Francisco J. Muñoz

Francisco J. Muñoz's wiki page.

Francisco J. Muñoz has authored 2 sequences.

A384427 Evil numbers that are not a multiple of any other evil number.

Original entry on oeis.org

3, 5, 17, 23, 29, 43, 53, 71, 77, 83, 89, 101, 113, 139, 149, 163, 169, 197, 209, 257, 263, 269, 277, 281, 287, 293, 311, 317, 329, 337, 343, 347, 349, 353, 359, 373, 383, 389, 401, 407, 413, 427, 449, 461, 467, 469, 479, 503, 509, 523, 533, 547, 553, 571, 593, 599
Offset: 1

Author

Francisco J. Muñoz, May 28 2025

Keywords

Crossrefs

Union of A217790 and A027699.

Programs

  • Maple
    isevil:= proc(n) convert(convert(n,base,2),`+`)::even end proc:
    N:= 1000: # for terms <= N
    V:= Vector(N,1):
    for i from 1 to N do
        if isevil(i) then V[[seq(j,j=2*i .. N, i)]]:= 0
        else V[i]:= 0
        fi
    od:
    select(t -> V[t]=1, [$1..N]); # Robert Israel, Jun 18 2025
  • Mathematica
    evilQ[n_] := EvenQ[DigitCount[n, 2, 1]]; q[n_] := evilQ[n] && AllTrue[Divisors[n], # == n || ! evilQ[#] &]; Select[Range[600], q] (* Amiram Eldar, May 31 2025 *)
  • PARI
    isevil(n) = hammingweight(n) % 2 == 0;
    noevildiv(n) = {fordiv(n, d, if ((d < n) && isevil(d), return (0)); ); 1; }
    isok(n) = isevil(n) && noevildiv(n); \\ Michel Marcus, May 31 2025

A333363 Horizontal visibility sequence at the onset of chaos in the 3-period cascade.

Original entry on oeis.org

3, 2, 5, 3, 2, 7, 3, 2, 5, 3, 2, 9, 3, 2, 5, 3, 2, 7, 3, 2, 5, 3, 2, 11, 3, 2, 5, 3, 2, 7, 3, 2, 5, 3, 2, 9, 3, 2, 5, 3, 2, 7, 3, 2, 5, 3, 2, 13, 3, 2, 5, 3, 2, 7, 3, 2, 5, 3, 2, 9, 3, 2, 5, 3, 2, 7, 3, 2, 5, 3, 2, 11, 3, 2, 5, 3, 2, 7, 3, 2, 5, 3, 2, 9, 3, 2, 5, 3, 2, 7, 3, 2, 5, 3, 2, 15
Offset: 1

Author

Keywords

Comments

This sequence represents the horizontal visibility of the points of the chaotic time series at the onset of chaos in the 3-period cascade of the logistic (unimodal) map.
Observation: if the sequence is written as a table array with six columns read by rows we have that, at least for the first 16 rows, the n-th row is "3, 2, 5, 3, 2" together with (6 + A037227(n)), see the example. - Omar E. Pol, Mar 16 2020

Examples

			From _Omar E. Pol_, Mar 16 2020: (Start)
Written as a table with six columns read by rows:
  3, 2, 5, 3, 2,  7;
  3, 2, 5, 3, 2,  9;
  3, 2, 5, 3, 2,  7;
  3, 2, 5, 3, 2, 11;
  3, 2, 5, 3, 2,  7;
  3, 2, 5, 3, 2,  9;
  3, 2, 5, 3, 2,  7;
  3, 2, 5, 3, 2, 13;
  3, 2, 5, 3, 2,  7;
  3, 2, 5, 3, 2,  9;
  3, 2, 5, 3, 2,  7;
  3, 2, 5, 3, 2, 11;
  3, 2, 5, 3, 2,  7;
  3, 2, 5, 3, 2,  9;
  3, 2, 5, 3, 2,  7;
  3, 2, 5, 3, 2, 15;
(End)
		

Crossrefs

Programs

  • Mathematica
    L[n_] := L[n] = Block[{s = {3, 2, 2*n+3}}, Do[s = Join[L[i], s], {i, n-1}]; s]; L[6] (* Giovanni Resta, Mar 16 2020 *)
  • R
    visibsuc3 <- function(n){
        suc <- c(3,2, 2*(n+1)+1)
        if(n>1){
        for(i in 1:(n-1)){
        suc <- c(visibsuc3(i), suc)
        }
       }
       return(suc)
      }

Formula

Conjectured: a(n) = 2*A007814(n/3) + 5 if 3|n and a(n) = 4 - (n mod 3) otherwise. - Giovanni Resta, Mar 16 2020