A036429
Primes related to Carmichael numbers of the form pqr, p
17, 79, 353, 389, 631, 769, 1459, 1559, 2389, 2837
Offset: 0
Keywords
References
- G Garcia-Pulgarin, Numeros de Carmichael producto de tres primos.
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Gilberto Garcia-Pulgarin's wiki page.
Gilberto Garcia-Pulgarin has authored 2 sequences.
2 is a term since there is no Carmichael number of the form 2rq.
is(p) = { for( A=1, p-1, my(B=ceil((p^2+1)/A),q,r); while(1, r=(B*(p+A-1)-p)/(A*B-p*p); q=(A*r-A+1)/p; if(p>=q, break); if(denominator(q)==1 && denominator(r)==1 && r>q && (q*r)%(p-1)==1 && isprime(q) && isprime(r), return(0)); B++ ) ); 1 }; \\ Charles R Greathouse IV, Feb 23 2013