A356594 Numbers k for which there exists at least one pair of positive integers (x,y) such that k = x + y and k' = x' + y', and every such pair is coprime.
3, 25, 55, 82, 85, 95, 116, 121, 145, 194, 226, 245, 253, 289, 295, 301, 305, 332, 335, 343, 362, 391, 407, 418, 422, 446, 455, 493, 529, 535, 548, 583, 611, 671, 731, 745, 749, 754, 778, 779, 781, 785, 799, 805, 815, 817, 818, 833, 838, 845, 866, 869, 899, 917, 931, 943, 955, 959, 985, 995, 998
Offset: 1
Keywords
Programs
-
PARI
D(n)={x=factor(n);n*sum(i=1,matsize(x)[1],x[i,2]/x[i,1])} Base(n)={for(i=1,n\2,if(D(n-i)+D(i)==D(n)&&gcd(i,n-i)==1,return(1)))} Impure(n)={for(i=1,n\2,if(D(n-i)+D(i)==D(n)&&gcd(i,n-i)!=1,return(1)))} IsTerm(n)={Base(n)&&!Impure(n)} Bp(n)={for(i=2,n,if(IsTerm(i),print1(i, ", ")))} Bp(1000)
-
PARI
ard(n)=vecsum([n/f[1]*f[2]|f<-factor(n+!n)~]); \\ A003415 isok1(m) = for (k=1, m\2, if (ard(m-k)+ard(k) == ard(m), return(1))); \\ A212662 isok(m) = if (isok1(m), my(d=divisors(m)); for (k=1, #d, if((d[k]!=m) && isok1(d[k]), return(0))); return(1)); \\ Michel Marcus, Aug 28 2022
Comments