cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Han Hu

Han Hu's wiki page.

Han Hu has authored 1 sequences.

A236309 Total number of distinct least common multiples of (i,j) with 1<=i

Original entry on oeis.org

0, 1, 3, 5, 9, 10, 16, 20, 26, 28, 38, 41, 53, 56, 61, 69, 85, 88, 106, 112, 119, 124, 146, 151, 171, 177, 195, 203, 231, 235, 265, 281, 293, 301, 319, 328, 364, 373, 387, 399, 439, 445, 487, 500, 517, 528, 574, 585, 627, 637, 656, 671, 723, 732, 757, 777, 798
Offset: 1

Author

Han Hu, Apr 22 2014

Keywords

Examples

			For n=10, 1<=i<j<=10, there are 28 distinct [i,j], i.e. 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 18, 20, 21, 24, 28, 30, 35, 36, 40, 42, 45, 56, 63, 70, 72, 90.
Hence a(10) = 28.
		

Crossrefs

Cf. A202479.

Programs

  • Maple
    b:= proc(n) b(n):= {seq(ilcm(i, n), i=1..n-1)} end:
    s:= proc(n) s(n):= `if`(n=0, {}, b(n) union s(n-1)) end:
    a:= n-> nops(s(n)):
    seq(a(n), n=1..80);  # Alois P. Heinz, Apr 29 2014
  • Mathematica
    a[n_] := Table[LCM[i, j], {i, 1, n-1}, {j, i+1, n}] // Flatten // Union // Length;
    Array[a, 100] (* Jean-François Alcover, Nov 07 2020 *)

Extensions

More terms from Alois P. Heinz, Apr 29 2014