cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Isaac R. Browne

Isaac R. Browne's wiki page.

Isaac R. Browne has authored 2 sequences.

A383902 Square table read by ascending antidiagonals where T(n,k) = binomial(k+2^n-2,k).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 7, 6, 1, 0, 1, 15, 28, 10, 1, 0, 1, 31, 120, 84, 15, 1, 0, 1, 63, 496, 680, 210, 21, 1, 0, 1, 127, 2016, 5456, 3060, 462, 28, 1, 0, 1, 255, 8128, 43680, 46376, 11628, 924, 36, 1, 0, 1, 511, 32640, 349504, 720720, 324632, 38760, 1716, 45, 1, 0
Offset: 0

Author

Isaac R. Browne, May 15 2025

Keywords

Comments

T(n,k) is the number of right total relations between a set of n distinguishable elements and a set of k indistinguishable elements.

Examples

			Rows start:
    1,  0,   0,   0,    0, ...
    1,  1,   1,   1,    1, ...
    1,  3,   6,  10,   15, ...
    1,  7,  28,  84,  210, ...
    1, 15, 120, 680, 3060, ...
		

Crossrefs

Cf. A383905 (descending diagonals), A092056 (no restriction on totality)

Programs

  • Maple
    T:= (n, k)-> binomial(k+2^n-2, k):
    seq(seq(T(d-k, k), k=0..d), d=0..10);  # Alois P. Heinz, May 16 2025

A383905 Square table read by descending antidiagonals where T(n,k) = binomial(k+2^n-2,k).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 7, 1, 0, 1, 10, 28, 15, 1, 0, 1, 15, 84, 120, 31, 1, 0, 1, 21, 210, 680, 496, 63, 1, 0, 1, 28, 462, 3060, 5456, 2016, 127, 1, 0, 1, 36, 924, 11628, 46376, 43680, 8128, 255, 1, 0, 1, 45, 1716, 38760, 324632, 720720, 349504, 32640, 511, 1
Offset: 0

Author

Isaac R. Browne, May 15 2025

Keywords

Comments

T(n,k) is the number of right total relations between a set of n distinguishable elements and a set of k indistinguishable elements.

Examples

			Rows start:
    1,  0,   0,   0,    0, ...
    1,  1,   1,   1,    1, ...
    1,  3,   6,  10,   15, ...
    1,  7,  28,  84,  210, ...
    1, 15, 120, 680, 3060, ...
		

Crossrefs

Cf. A383902 (ascending diagonals), A137153 (no restriction on totality).

Programs

  • Maple
    T:= (n, k)-> binomial(k+2^n-2, k):
    seq(seq(T(n, d-n), n=0..d), d=0..10);  # Alois P. Heinz, May 16 2025