cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Italo J Dejter

Italo J Dejter's wiki page.

Italo J Dejter has authored 1 sequences.

A360056 a(n) is the position, counted from the right, of the rightmost nonzero value in the n-th nonzero restricted growth string in A239903 and its infinite continuation.

Original entry on oeis.org

1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 5, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 4, 1, 2, 1, 1, 3, 1
Offset: 1

Author

Italo J Dejter, Jan 23 2023

Keywords

Comments

The integer a(n) intervenes as a parameter of an algorithm (Dejter) that generates an ordered tree comprising all Dyck words. The nodes of this ordered tree represent the cyclic classes of vertices, and the cycles of uniform 2-factors (Mutze et al.), of the Odd graphs and Middle-Levels graphs. These factors were used to generate explicit Hamilton cycles in those graphs.

Examples

			The subindices j of the rightmost nonzero entries in the first five Catalan words a_{k-1}...a_j...a_1, namely a_1=1, a_2a_1=10, a_2a_1=11, a_2a_1=12, a_3a_2a_1=100, are 1,2,1,1,3.
		

References

  • I. J. Dejter, A numeral system for the middle-levels graph, EJGTA, Vol. 9 no. 1 (2021).
  • I. J. Dejter, Reinterpreting the middle-levels via natural enumeration of ordered trees, Vol. 3 (2020) Open Journal of Discrete Applied Mathematics, Vol 3 (2020) issue 2, pp. 8-22.
  • P. Gregor, T. Mutze, and J. Nummenpalo, A short proof of the middle-levels theorem, Discrete Analysis, 2018-8, 12 pp.
  • T. Mutze, C. Standke, and V. Wiechert, A minimum-change version of the Chung-Feller theorem for Dyck paths, European J. Combin, 69 (2018), 260-275.
  • T. Mutze, J. Nummenpalo, and D. Walczak, Sparse Kneser graphs are hamiltonian, J. London Math. Soc., 103 (2021), 1253-1275.
  • T. Mutze, Proof of the middle-levels conjecture, Proc. London Math. Soc., 112 (2016) 677-713.
  • J. Arndt, Matters Computational, Ideas, Algorithms, Source Code, Springer 2011 (fxtbook.pdf)

Crossrefs

Cf. A239903.

Programs

  • PARI
    \\ here nxt(w) sequences reversed rgs words starting with [1].
    nxt(w)=if(w[1]==#w, vector(#w+1, i, i>#w), my(k=1); while(w[k]>w[k+1], w[k]=0; k++); w[k]++; w)
    seq(n)={my(a=vector(n), w=[1]); for(i=1, n, my(j=1); while(!w[j], j++); a[i]=j; w=nxt(w)); a} \\ Andrew Howroyd, Jan 23 2023

Extensions

Terms a(43) and beyond from Andrew Howroyd, Jan 23 2023
Name corrected by Italo J Dejter, Feb 14 2023