cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Jean-Pierre Levrel

Jean-Pierre Levrel's wiki page.

Jean-Pierre Levrel has authored 1 sequences.

A247150 Number of paths from (0,0,0) to (n,n,n) avoiding 3 or more consecutive right steps, 3 or more consecutive up steps, and 3 or more consecutive away steps.

Original entry on oeis.org

1, 6, 90, 1314, 21084, 353772, 6128208, 108606408, 1958248980, 35787633828, 661145207064, 12322983505860, 231395387482470, 4372431546366636, 83068148270734740, 1585548331063624992, 30388252830928088010, 584527926996090202428, 11279880522021539956860
Offset: 0

Author

Jean-Pierre Levrel, Nov 21 2014

Keywords

Comments

This is a generalization of A177790 from 2D to 3D.
a(n) is also the number of ternary vectors (symbols 0, 1, and 2, for example) that can be composed with 3n elements (same number of each of the symbols) where each symbol cannot be repeated more than twice consecutively. For example, 0,2,1,0,2,2,1,0,1 is allowed, but 0,2,1,1,1,2,2,0,0 is prohibited because the symbol 1 is repeated 3 times.

Examples

			For n=1 the 6 paths are (000>001>011>111), (000>001>101>111), (000>010>011>111), (000>010>110>111), (000>100>101>111), (000>100>110>111).
		

Crossrefs

Cf. A177790.

Programs

  • Maple
    f:= proc(p,q,r) option remember;
      if p`))) fi;
      if r < 0 then return 0 fi;
       procname(p-1,q-1,r)+procname(p-1,q-2,r)+procname(p-2,q-1,r)+procname(p-2,q-2,r)+2*procname(p-1,q-1,r-1)+procname(p,q-2,r-1)+2*procname(p-1,q-2,r-1)+procname(p-1,q,r-1)+2*procname(p-2,q-1,r-1)+procname(p-2,q,r-1)+2*procname(p-2,q-2,r-1)+procname(p,q-1,r-1)+2*procname(p-2,q-2,r-2)+procname(p,q-1,r-2)+2*procname(p-1,q-1,r-2)+procname(p,q-2,r-2)+2*procname(p-1,q-2,r-2)+procname(p-1,q,r-2)+2*procname(p-2,q-1,r-2)+procname(p-2,q,r-2)
    end proc:
    f(0,0,0) := 1: f(1,0,0) := 1:
    f(1,1,0) := 2: f(1,1,1) := 6:
    f(2,0,0) := 1: f(2,1,0) := 3:
    f(2,1,1) := 12: f(2,2,0) := 6:
    f(2,2,1) := 30: f(2,2,2) := 90:
    seq(f(n,n,n), n=0..30); # Robert Israel, Nov 26 2014
    # second Maple program:
    b:= proc(i, j, k, t) option remember; `if`(max(i, j, k)=0, 1,
          `if`(j>0, b(j-1, `if`(i0, b(k-1, `if`(i0 and t>0, b(i-1, j, k, t-1), 0))
        end:
    a:= n-> b(n$3, 2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 26 2014
  • Mathematica
    (* Very slow *) a[0] = 1; a[n_] := SeriesCoefficient[((1+x+x^2)*(1+y+y^2)*(1+z+z^2)/(1-x*y*(1+x)*(1+y) - x*z*(1+x)*(1+ z) - y*z*(1+y)*(1+z) - 2*x*y*z*(1+x)*(1+y)*(1+z))), {x, 0, n}, {y, 0, n}, {z, 0, n}]; Table[Print[an = a[n]]; an, {n, 0, 10}] (* Jean-François Alcover, Nov 26 2014 *)
    b[i_, j_, k_, t_] := b[i, j, k, t] = If[Max[i, j, k] == 0, 1, If[j>0, If[i0, If[i0 && t>0, b[i-1, j, k, t-1], 0]]; a[n_] := b[n, n, n, 2]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 27 2014, after Alois P. Heinz *)

Formula

a(n) = [x^n y^n z^n] ((1+x+x^2)*(1+y+y^2)*(1+z+z^2)/(1-x*y*(1+x)*(1+y)-x*z*(1+x)*(1+z)-y*z*(1+y)*(1+z)-2*x*y*z*(1+x)*(1+y)*(1+z))).
Recurrence (20 terms):
a(p,q,r) = a(p-1,q-1,r) +a(p-1,q-2,r) +a(p-2,q-1,r) +a(p-2,q-2,r) +2*a(p-1,q-1,r-1) +a(p,q-2,r-1) +2*a(p-1,q-2,r-1) +a(p-1,q,r-1) +2*a(p-2,q-1,r-1) +a(p-2,q,r-1) +2*a(p-2,q-2,r-1) +a(p,q-1,r-1) +2*a(p-2,q-2,r-2) +a(p,q-1,r-2) +2*a(p-1,q-1,r-2) +a(p,q-2,r-2) +2*a(p-1,q-2,r-2) +a(p-1,q,r-2) +2*a(p-2,q-1,r-2) +a(p-2,q,r-2), for (p,q,r) > 2.
a(p,q,r) = 0 when p or q or r is negative.
Initial conditions: a(0,0,0) = 1, a(1,0,0) = 1, a(1,1,0) = 2, a(1,1,1) = 6, a(2,0,0) = 1, a(2,1,0) = 3, a(2,1,1) = 12, a(2,2,0) = 6, a(2,2,1) = 30, a(2,2,2) = 90.
Symmetry: a(p,q,r) = a(p,r,q) = a(q,p,r) = a(q,r,p) = a(r,p,q) = a(r,q,p).