A247150 Number of paths from (0,0,0) to (n,n,n) avoiding 3 or more consecutive right steps, 3 or more consecutive up steps, and 3 or more consecutive away steps.
1, 6, 90, 1314, 21084, 353772, 6128208, 108606408, 1958248980, 35787633828, 661145207064, 12322983505860, 231395387482470, 4372431546366636, 83068148270734740, 1585548331063624992, 30388252830928088010, 584527926996090202428, 11279880522021539956860
Offset: 0
Keywords
Examples
For n=1 the 6 paths are (000>001>011>111), (000>001>101>111), (000>010>011>111), (000>010>110>111), (000>100>101>111), (000>100>110>111).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..250
- M. Erickson, S. Fernando, K. Tran, Enumerating rook and queen paths, Bulletin of the Institute for Combinatorics and Its Applications, Volume 60 (2010), 37-48.
Crossrefs
Cf. A177790.
Programs
-
Maple
f:= proc(p,q,r) option remember; if p
`))) fi; if r < 0 then return 0 fi; procname(p-1,q-1,r)+procname(p-1,q-2,r)+procname(p-2,q-1,r)+procname(p-2,q-2,r)+2*procname(p-1,q-1,r-1)+procname(p,q-2,r-1)+2*procname(p-1,q-2,r-1)+procname(p-1,q,r-1)+2*procname(p-2,q-1,r-1)+procname(p-2,q,r-1)+2*procname(p-2,q-2,r-1)+procname(p,q-1,r-1)+2*procname(p-2,q-2,r-2)+procname(p,q-1,r-2)+2*procname(p-1,q-1,r-2)+procname(p,q-2,r-2)+2*procname(p-1,q-2,r-2)+procname(p-1,q,r-2)+2*procname(p-2,q-1,r-2)+procname(p-2,q,r-2) end proc: f(0,0,0) := 1: f(1,0,0) := 1: f(1,1,0) := 2: f(1,1,1) := 6: f(2,0,0) := 1: f(2,1,0) := 3: f(2,1,1) := 12: f(2,2,0) := 6: f(2,2,1) := 30: f(2,2,2) := 90: seq(f(n,n,n), n=0..30); # Robert Israel, Nov 26 2014 # second Maple program: b:= proc(i, j, k, t) option remember; `if`(max(i, j, k)=0, 1, `if`(j>0, b(j-1, `if`(i
0, b(k-1, `if`(i 0 and t>0, b(i-1, j, k, t-1), 0)) end: a:= n-> b(n$3, 2): seq(a(n), n=0..30); # Alois P. Heinz, Nov 26 2014 -
Mathematica
(* Very slow *) a[0] = 1; a[n_] := SeriesCoefficient[((1+x+x^2)*(1+y+y^2)*(1+z+z^2)/(1-x*y*(1+x)*(1+y) - x*z*(1+x)*(1+ z) - y*z*(1+y)*(1+z) - 2*x*y*z*(1+x)*(1+y)*(1+z))), {x, 0, n}, {y, 0, n}, {z, 0, n}]; Table[Print[an = a[n]]; an, {n, 0, 10}] (* Jean-François Alcover, Nov 26 2014 *) b[i_, j_, k_, t_] := b[i, j, k, t] = If[Max[i, j, k] == 0, 1, If[j>0, If[i
0, If[i 0 && t>0, b[i-1, j, k, t-1], 0]]; a[n_] := b[n, n, n, 2]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 27 2014, after Alois P. Heinz *)
Formula
a(n) = [x^n y^n z^n] ((1+x+x^2)*(1+y+y^2)*(1+z+z^2)/(1-x*y*(1+x)*(1+y)-x*z*(1+x)*(1+z)-y*z*(1+y)*(1+z)-2*x*y*z*(1+x)*(1+y)*(1+z))).
Recurrence (20 terms):
a(p,q,r) = a(p-1,q-1,r) +a(p-1,q-2,r) +a(p-2,q-1,r) +a(p-2,q-2,r) +2*a(p-1,q-1,r-1) +a(p,q-2,r-1) +2*a(p-1,q-2,r-1) +a(p-1,q,r-1) +2*a(p-2,q-1,r-1) +a(p-2,q,r-1) +2*a(p-2,q-2,r-1) +a(p,q-1,r-1) +2*a(p-2,q-2,r-2) +a(p,q-1,r-2) +2*a(p-1,q-1,r-2) +a(p,q-2,r-2) +2*a(p-1,q-2,r-2) +a(p-1,q,r-2) +2*a(p-2,q-1,r-2) +a(p-2,q,r-2), for (p,q,r) > 2.
a(p,q,r) = 0 when p or q or r is negative.
Initial conditions: a(0,0,0) = 1, a(1,0,0) = 1, a(1,1,0) = 2, a(1,1,1) = 6, a(2,0,0) = 1, a(2,1,0) = 3, a(2,1,1) = 12, a(2,2,0) = 6, a(2,2,1) = 30, a(2,2,2) = 90.
Symmetry: a(p,q,r) = a(p,r,q) = a(q,p,r) = a(q,r,p) = a(r,p,q) = a(r,q,p).
Comments