cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Jennifer Jin

Jennifer Jin's wiki page.

Jennifer Jin has authored 2 sequences.

A247475 Numbers formed by concatenating two successive primes and their product.

Original entry on oeis.org

236, 3515, 5735, 71177, 1113143, 1317221, 1719323, 1923437, 2329667, 2931899, 31371147, 37411517, 41431763, 43472021, 47532491, 53593127, 59613599, 61674087, 67714757, 71735183, 73795767, 79836557, 83897387
Offset: 1

Author

Jennifer Jin, Nov 30 2014

Keywords

Examples

			For n=1 the successive primes are 2 and 3, so the number formed is 236.
		

Programs

  • Mathematica
    a247475[n_Integer] := Module[{p}, p := Prime /@ List[n, n + 1];
    FromDigits@Flatten@Join[IntegerDigits[p], IntegerDigits[Times @@ p]]]; a247475/@Range[120] (* Michael De Vlieger, Dec 01 2014 *)

A247474 Numbers formed by concatenating two successive primes and their sum.

Original entry on oeis.org

235, 358, 5712, 71118, 111324, 131730, 171936, 192342, 232952, 293160, 313768, 374178, 414384, 434790, 4753100, 5359112, 5961120, 6167128, 6771138, 7173144, 7379152, 7983162, 8389172, 8997186, 97101198, 101103204, 103107210, 107109216, 109113222, 113127240
Offset: 1

Author

Jennifer Jin, Nov 30 2014

Keywords

Comments

After the first term, every term is even.

Examples

			For n=1 the two successive primes are 2 and 3, 2+3=5. Therefore the number created is 235.
		

Crossrefs

Programs

  • Mathematica
    a247474[n_Integer] := Module[{p, f}, p := Prime /@ List[n, n + 1]; FromDigits@Flatten@Join[IntegerDigits[p], IntegerDigits[Plus @@ p]]]; a247474/@Range[120] (* Michael De Vlieger, Dec 01 2014 *)
    FromDigits[Join[IntegerDigits[#[[1]]],IntegerDigits[#[[2]]], IntegerDigits[ Total[#]]]]&/@Partition[Prime[Range[40]],2,1] (* Harvey P. Dale, Jul 29 2015 *)