cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Jennifer Lansing

Jennifer Lansing's wiki page.

Jennifer Lansing has authored 1 sequences.

A240388 A sequence related to the Stern sequence s(n) (A002487), defined by w(n) = s(3n)/2.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 2, 4, 1, 4, 2, 3, 2, 5, 4, 6, 1, 6, 4, 5, 2, 3, 3, 7, 2, 9, 5, 7, 4, 9, 6, 8, 1, 8, 6, 9, 4, 7, 5, 9, 2, 7, 3, 4, 3, 8, 7, 11, 2, 13, 9, 12, 5, 8, 7, 15, 4, 17, 9, 11, 6, 13, 8, 10, 1, 10, 8, 13, 6, 11, 9, 17, 4, 15, 7, 8, 5, 12, 9, 13, 2, 11, 7, 8, 3, 4, 4, 10, 3, 14, 8, 12, 7, 16, 11, 15, 2, 17, 13, 20, 9, 16, 12, 22, 5, 18, 8, 10, 7, 18, 15, 23, 4, 25, 17, 22, 9, 14, 11, 23, 6, 25, 13, 15, 8, 17, 10, 12, 1
Offset: 0

Author

Jennifer Lansing, Apr 04 2014

Keywords

Comments

The even terms in the Stern sequence, divided by 2.

Examples

			w(7) = w(8-1) = w(3)+2w(1) = 2+2 = 4.
w(11) = w(8+3) = w(4+1)+w(2+1)-w(1)=w(5)+w(3)-w(1) = 2+2-1 = 3.
Comment from _N. J. A. Sloane_, Jul 01 2014: (Start)
May be arranged as a triangle:
  0
  1
  1
  2 1 2
  2 4 1 4 2
  3 2 5 4 6 1 6 4 5 2 3
  3 7 2 9 5 7 4 9 6 8 1 8 6 9 4 7 5 9 2 7 3
  ... (End)
		

Crossrefs

Cf. A002487.

Programs

  • Maple
    A240388 := proc(n)
        option remember;
        local nloc;
        if n <=1  then
            n;
        elif n = 3 then
            2;
        elif type(n,'even') then
            procname(n/2) ;
        elif modp(n,8) = 1 then
            nloc := (n-1)/8 ;
            procname(4*nloc+1)+2*procname(nloc) ;
        elif modp(n,8) = 7 then
            nloc := (n+1)/8 ;
            procname(4*nloc-1)+2*procname(nloc) ;
        elif modp(n,8) = 3 then
            nloc := (n-3)/8 ;
            procname(4*nloc+1)+procname(2*nloc+1)-procname(nloc) ;
        else
            nloc := (n+3)/8 ;
            procname(4*nloc-1)+procname(2*nloc-1)-procname(nloc) ;
        end if;
    end proc: # R. J. Mathar, Jul 05 2014
    # second Maple program:
    b:= proc(n) option remember; `if`(n<2, n,
          (q-> b(q)+(n-2*q)*b(n-q))(iquo(n, 2)))
        end:
    a:= n-> b(3*n)/2:
    seq(a(n), n=0..128);  # Alois P. Heinz, Jun 20 2022
  • Mathematica
    Clear[s]; s[0] = 0; s[1] = 1; s[n_?EvenQ] := s[n] = s[n/2];
    s[n_?OddQ] :=
    s[n] = s[(n + 1)/2] + s[(n - 1)/2] (* For the Stern sequence *)
    Clear[w]; w[n_] = 1/2 s[3 n]
  • PARI
    a(n)=my(a=1, b=0); n*=3; while(n>0, if(n%2, b+=a, a+=b); n>>=1); b/2 \\ Charles R Greathouse IV, May 27 2014
    
  • Python
    from functools import reduce
    def A240388(n): return sum(reduce(lambda x,y:(x[0],x[0]+x[1]) if int(y) else (x[0]+x[1],x[1]),bin(3*n)[-1:2:-1],(1,0)))//2 # Chai Wah Wu, Jun 20 2022

Formula

w(0)=0, w(1)=1, and w(3)=2. For n >= 1, w(n) satisfies the recurrences w(2n)=w(n), w(8n +/- 1)=w(4n +/- 1) + 2w(n), w(8n +/- 3)=w(4n +/- 1) + w(2n +/- 1) -w(n).
a(n) = A002487(3*n) / 2. - Joerg Arndt, Jun 20 2022