cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: John B. Yin

John B. Yin's wiki page.

John B. Yin has authored 1 sequences.

A246541 Take the squares of all P_(n+2)-rough numbers less than the (n+1)-th primorial and mod each by the (n+1)-th primorial. There will be a(n) different results.

Original entry on oeis.org

1, 2, 6, 30, 180, 1440, 12960, 142560, 1995840, 29937600, 538876800, 10777536000, 226328256000, 5205549888000, 135344297088000, 3924984615552000, 117749538466560000, 3885734769396480000, 136000716928876800000, 4896025809439564800000, 190945006568143027200000
Offset: 1

Author

John B. Yin, Aug 29 2014

Keywords

Comments

The P_(n+2)-rough numbers less than the (n+1)-th primorial also comprise the reduced residue system of the (n+1)-th primorial.
The conjectured formula from Jon E. Schoenfield is true. This can be seen by considering that each odd prime p has exactly (p+1)/2 quadratic residues (mod p), of which (p-1)/2 are nonzero. The P_(n+2)-rough numbers less than the (n+1)-th primorial comprise all combinations of nonzero residues modulo the first n+1 primes. So for each odd prime p, the p-1 nonzero residues map to (p-1)/2 (nonzero) residues after squaring. - Bert Dobbelaere, Aug 09 2023

Examples

			For n=2, P_(n+2) = 7.
The 7-rough numbers less than 2*3*5 are 1,7,11,13,17,19,23,29.
The squares of those numbers mod 2*3*5 are 1,19,1,19,19,1,19,1.
There are 2 different results: 1 and 19; so a(2) = 2.
		

Crossrefs

Cf. A002110 (primorial).
Cf. k-rough numbers A007310 (k=5), A007775 (k=7), A008364 (k=11), A008365 (k=13), A008366 (k=17), A166061 (k=19), A166063 (k=23).
Cf. A323739.

Programs

  • Java
    import java.util.TreeSet;
    for(int z = 1; z < 10 ; z++) {
    int n = z;
    int numNumPerLine = 210;
    int[] primes = {2,3,5,7,11,13,17,19,23,29,31,37,41,43};
    int numRepeats = 1;
    int numSpaces = 1;
    for(int i = 0; i < n + 1; i++) {
    numSpaces *= (primes[i] - 1);
    }
    int counter = 0;
    long integerLength = 1;
    for(int i = 0; i < n + 1; i++) {
    integerLength *= primes[i];
    }
    TreeSet numResults = new TreeSet();
    numSpaces/=2;
    for(int i = 1; i < integerLength / 2; i+=2) {
    boolean isInList = true;
    for(int j = 1; j < n + 1; j++) {
    if(i % primes[j] == 0) {
    isInList = false;
    }
    }
    if(isInList) {
    long k = i % integerLength;
    if(k != 0) {
    long l = (k * k) % integerLength;
    if(!numResults.contains(l)) {
    numResults.add(l);
    }
    }
    }
    }
    System.out.println(numResults.size());
    }
    
  • PARI
    a(n) = {hp = prod(k=1, n+1, prime(k)); rp = prod(k=1, n+2, prime(k)); v = []; for (i=1, hp, if (gcd(i, rp) == 1, nv = i^2 % hp; if (! vecsearch(v, nv), v = vecsort(concat(v, nv))););); #v;} \\ Michel Marcus, Sep 06 2014

Formula

Conjecture: a(n) = (1/2^n)*Product_{j=1..n} (prime(j+1)-1) = A005867(n+1)/2^n. - Jon E. Schoenfield, Feb 20 2019
a(n) = A323739(n+1). - Bert Dobbelaere, Aug 09 2023