cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Jori Mäntysalo

Jori Mäntysalo's wiki page.

Jori Mäntysalo has authored 3 sequences.

A271077 Number of pseudocomplemented lattices on n nodes.

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 10, 29, 99, 391, 1775, 9214
Offset: 0

Author

Jori Mäntysalo, Mar 30 2016

Keywords

Crossrefs

Cf. A006966.

Programs

  • SageMath
    for i in range(0, 12):
        n = 0
        for P in Posets(i):
            if P.is_lattice():
                L = LatticePoset(P)
                if L.is_pseudocomplemented():
                    n += 1
        print(n)

A271078 Number of non-isomorphic atomic lattices on n nodes.

Original entry on oeis.org

0, 1, 1, 0, 1, 1, 2, 4, 9, 22, 59, 181
Offset: 0

Author

Jori Mäntysalo, Mar 30 2016

Keywords

Crossrefs

Cf. A006966.

Programs

  • SageMath
    for i in range(0, 12):
        n = 0
        for P in Posets(i):
            if P.is_lattice():
                L = LatticePoset(P)
                if L.is_atomic():
                    n += 1
        print(n)

A261994 Number of complemented lattices on n nodes.

Original entry on oeis.org

1, 1, 1, 0, 1, 2, 6, 18, 71, 307, 1594, 9446, 63461
Offset: 0

Author

Jori Mäntysalo, Sep 08 2015

Keywords

References

  • R. Belohlavek, V. Vychodil, Residual lattices of size <=12, Order 27 (2010) 147-161 doi:10.1007/s11083-010-9143-7, Table 6

Programs

  • Sage
    for n in range(7):
        print(len([L for L in Posets(n) if L.is_lattice() and LatticePoset(L).is_complemented()]))