cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Joseph G. Rosenstein

Joseph G. Rosenstein's wiki page.

Joseph G. Rosenstein has authored 1 sequences.

A274630 Square array T(n,k) (n>=1, k>=1) read by antidiagonals upwards in which the number entered in a square is the smallest positive number that is different from the numbers already filled in that are queens' or knights' moves away from that square.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 3, 7, 8, 2, 5, 1, 9, 4, 7, 6, 2, 10, 11, 1, 5, 7, 4, 12, 6, 3, 9, 8, 8, 9, 11, 13, 2, 10, 6, 4, 10, 12, 1, 3, 4, 7, 13, 11, 9, 9, 6, 2, 5, 8, 1, 12, 14, 3, 10, 11, 13, 3, 7, 6, 14, 9, 5, 1, 12, 15, 12, 8, 4, 14, 9, 11, 10, 3, 15, 2, 7, 13, 13, 10, 5, 1, 12, 15, 2, 16, 6, 4, 8, 14, 11
Offset: 1

Author

N. J. A. Sloane following a suggestion from Joseph G. Rosenstein, Jul 07 2016

Keywords

Comments

If we only worry about queens' moves then we get the array in A269526.
Presumably, as in A269526, every column, every row, and every diagonal is a permutation of the natural numbers.
The knights only affect the squares in their immediate neighborhood, so this array will have very similar properties to A269526. The most noticeable difference is that the first column is no longer A000027, it is now A274631.
A piece that can move like a queen or a knight is known as a Maharaja. If we subtract 1 from the entries here we obtain A308201. - N. J. A. Sloane, Jun 30 2019

Examples

			The array begins:
1, 3, 6, 2, 7, 5, 8, 4, 9, 10, 15, 13, 11, 18, 12, 20, 16, 22, ...
2, 5, 8, 4, 1, 9, 6, 11, 3, 12, 7, 14, 17, 15, 10, 13, 19, 24, ...
4, 7, 9, 11, 3, 10, 13, 14, 1, 2, 8, 5, 6, 16, 22, 17, 21, 12, ...
3, 1, 10, 6, 2, 7, 12, 5, 15, 4, 16, 20, 13, 9, 11, 14, 25, 8, ...
5, 2, 12, 13, 4, 1, 9, 3, 6, 11, 10, 17, 19, 8, 7, 15, 23, 29, ...
6, 4, 11, 3, 8, 14, 10, 16, 13, 1, 2, 7, 15, 5, 24, 21, 9, 28, ...
7, 9, 1, 5, 6, 11, 2, 12, 8, 14, 3, 21, 23, 22, 4, 27, 18, 30, ...
8, 12, 2, 7, 9, 15, 1, 19, 4, 5, 6, 10, 18, 3, 26, 23, 11, 31, ...
10, 6, 3, 14, 12, 4, 5, 9, 11, 7, 1, 8, 16, 13, 2, 24, 28, 20, ...
9, 13, 4, 1, 10, 2, 7, 18, 12, 3, 17, 19, 24, 14, 20, 5, 8, 6, ...
11, 8, 5, 9, 13, 3, 15, 1, 2, 6, 20, 18, 10, 4, 17, 7, 12, 14, ...
12, 10, 7, 18, 11, 6, 4, 8, 14, 9, 5, 15, 21, 2, 16, 26, 3, 13, ...
13, 15, 17, 12, 14, 16, 18, 7, 10, 22, 11, 3, 8, 19, 23, 9, 2, 1, ...
14, 11, 19, 8, 5, 20, 3, 2, 16, 13, 12, 25, 4, 10, 6, 18, 7, 15, ...
16, 18, 21, 10, 15, 13, 11, 17, 5, 8, 9, 6, 7, 30, 25, 28, 20, 19, ...
15, 20, 13, 17, 16, 12, 19, 6, 7, 24, 18, 11, 28, 23, 14, 22, 5, 36, ...
17, 14, 22, 19, 18, 8, 20, 10, 23, 15, 4, 1, 3, 24, 13, 16, 33, 9, ...
18, 16, 23, 24, 25, 26, 14, 13, 17, 19, 22, 9, 5, 6, 8, 10, 15, 27, ...
...
Look at the entry in the second cell in row 3. It can't be a 1, because the 1 in cell(1,2) is a knight's move away, it can't be a 2, 3, 4, or 5, because it is adjacent to cells containing these numbers, and there is a 6 in cell (1,3) that is a knight's move away. The smallest free number is therefore 7.
		

Crossrefs

For first column, row, and main diagonal see A274631, A274632, A274633.
See A308883 for position of 1 in column n.
See A308201 for an essentially identical array.

Programs

  • Maple
    # Based on Alois P. Heinz's program for A269526
    A:= proc(n, k) option remember; local m, s;
             if n=1 and k=1 then 1
           else s:= {seq(A(i, k), i=1..n-1),
                     seq(A(n, j), j=1..k-1),
                     seq(A(n-t, k-t), t=1..min(n, k)-1),
                     seq(A(n+j, k-j), j=1..k-1)};
    # add knights moves
    if n >= 3            then s:={op(s),A(n-2,k+1)}; fi;
    if n >= 3 and k >= 2 then s:={op(s),A(n-2,k-1)}; fi;
    if n >= 2 and k >= 3 then s:={op(s),A(n-1,k-2)}; fi;
    if            k >= 3 then s:={op(s),A(n+1,k-2)}; fi;
                for m while m in s do od; m
             fi
         end:
    [seq(seq(A(1+d-k, k), k=1..d), d=1..15)];
  • Mathematica
    A[n_, k_] := A[n, k] = Module[{m, s}, If[n==1 && k==1, 1, s = Join[Table[ A[i, k], {i, 1, n-1}], Table[A[n, j], {j, 1, k-1}], Table[A[n-t, k-t], {t, 1, Min[n, k]-1}], Table[A[n+j, k-j], {j, 1, k-1}]] // Union; If[n >= 3, AppendTo[s, A[n-2, k+1]] // Union ]; If[n >= 3 && k >= 2, AppendTo[s, A[n-2, k-1]] // Union]; If[n >= 2 && k >= 3, AppendTo[s, A[n-1, k-2]] // Union]; If[k >= 3, AppendTo[s, A[n+1, k-2]] // Union]; For[m = 1, MemberQ[s, m], m++]; m]]; Table[A[1+d-k, k], {d, 1, 15}, {k, 1, d}] // Flatten (* Jean-François Alcover, Mar 14 2017, translated from Maple *)