A368499 Number of non-congruent simple polygons with 2n sides on the unbounded chessboard such that each side is an edge of the corresponding knight graph.
3, 13, 178, 3034, 64877, 1503790, 36930111
Offset: 2
Examples
For n=2 the a(2)=3 solutions (in standard chess notation) are: (a1,c2,d4,b3), (a2,c1,d2,c3), (a2,c1,d3,b3). For n=3 the a(3)=13 solutions are: (a1,b3,a5,c4,e3,c2), (a1,b3,a5,c6,b4,c2), (a1,b3,a5,c6,d4,c2), (a1,b3,c5,e6,d4,c2), (a2,b4,c2,d4,e2,c1), (a2,b4,c6,d4,b3,c1), (a2,b4,c6,d4,e2,c1), (a2,b4,c6,e5,d3,c1), (a2,b4,d5,c3,e2,c1), (a2,b4,d5,f4,d3,c1), (a2,b4,d5,f4,e2,c1), (a2,c1,d3,f4,d5,c3), (a2,c1,e2,g3,e4,c3).
Links
- Stoyan Kapralov, Valentin Bakoev, and Kaloyan Kapralov, Algorithms for Construction and Enumeration of Closed Knight's Paths, Mathematics and Informatics, 2, (2023), 107-114; arXiv:2304.00565 [math.CO], 2023.
- Kaloyan Kapralov, Example for n=3: the 13 non-congruent simple polygons.
Comments