A265674 Sequence that encodes the compliform polynomials associated to the tree of hemitropic sequences.
1, 0, 1, 0, 2, -1, 0, 1, 0, 3, 0, 1, 0, 4, -2, 0, 3, 1, 0, 3, 2, -1, 0, 2, 1, 0, 1, 0, 5, -2, 0, 4, 1, 0, 4, 2, 4, 0, 3, -2, 0, 3, 2, 0, 1, 0, 6, -2, 0, 5, 1, 0, 5, 2, 4, 0, 4, 1, 0, 4, 3, -3, 0, 4, 2, -4, 0, 3, 1, 0, 3, 2, 3, 0, 2, -3, 0
Offset: 1
Links
- Labib Haddad, Some peculiarities of order 2 bases of N and the Erdos-Turan conjecture, arXiv:1507.05849 [math.NT], 2015
- Wikipedia, Erdős-Turán conjecture on additive bases
Crossrefs
Cf. A265262.
Formula
An algorithm for the e_n's. For k >+ 1, let P_(k+1) = (x_(k+1) - e_k)^2 - (x_(k+1) - e_k) = x_(k+1)^2 -x_(k+1) -2x_k+1e_k + e_k^2 + e_k: a polynomial in several variables, having degree 2 in the variable x_(k+1).
Start with e_1 = 1. Once the polynomials e_1,...,e_(n-1) have been obtained, set E_n =(x_n-e_(n-1))+(x_2-e_1)(x_(n-1)- e_(n-2)) + ... + (x_m - e_(m-1))(x_(n-m+1) - e_(n-m)) with m = floor((n + 1)/2): a polynomial in the variables x_2,...,x_n, not necessarily compliform, whose coefficients are integers, and having degree 1 in x_n.
Then, reduce E_n as follows: Let E_(n,n-1) be the remainder in the Euclidean division of E_n by P_(n-1) as polynomials in x_(n-1). Inductively, let E_(n,n-1,...,k) be the remainder in the Euclidean division of E_(n,n-1,k+1) by P_k as polynomials in x_k. This gives e_n = E_(n,n-1,··· ,2), a compliform polynomial. See Haddad link p.32 Corollary.
Comments