A287324 a(n) = A008412(n-1) + A008412(n-2) for n>1, a(0)=0, a(1)=1.
0, 1, 9, 40, 120, 280, 552, 968, 1560, 2360, 3400, 4712, 6328, 8280, 10600, 13320, 16472, 20088, 24200, 28840, 34040, 39832, 46248, 53320, 61080, 69560, 78792, 88808, 99640, 111320, 123880, 137352, 151768, 167160, 183560, 201000, 219512, 239128, 259880, 281800
Offset: 0
References
- William Dunham, Euler The Master of Us All, The Mathematical Association of America, 1999 p. 40.
- Joseph and Frances Gies, Leonard of Pisa and the New Mathematics of the Middle Ages, Thomas Y. Crowell Company New York, 1969, p. 78.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Leo James Borcherding, Tetrahedron Family of f(k,n)
- Leo James Borcherding, The Unified Tetrahedral Family Defined by Pascal's Triangle
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
PARI
concat(0, Vec(x*(x+1)^5/(x-1)^4 + O(x^30))) \\ Michel Marcus, May 24 2017
Formula
G.f.: x*(x + 1)^5 / (x - 1)^4.
a(n) = 8*(n - 1)*((n - 1)^2 + 2)/3 + 8*(n - 2)*((n - 2)^2 + 2)/3 = 8*(2*n - 3)*(n^2 - 3*n + 5)/3 for n>2, a(0)=0, a(1)=1, a(2)=9.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>6. - Colin Barker, Jun 05 2017
Comments