cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Luis Mantilla

Luis Mantilla's wiki page.

Luis Mantilla has authored 1 sequences.

A341896 a(n) is the number of words of length n over the alphabet {a,b,c} with an even number of appearances of the letter 'a' and the sum of appearances of the letters 'b' and 'c' add up to at most 3.

Original entry on oeis.org

1, 2, 5, 14, 25, 90, 61, 294, 113, 690, 181, 1342, 265, 2314, 365, 3670, 481, 5474, 613, 7790, 761, 10682, 925, 14214, 1105, 18450, 1301, 23454, 1513, 29290, 1741, 36022, 1985, 43714, 2245, 52430, 2521, 62234, 2813, 73190, 3121, 85362, 3445, 98814, 3785, 113610
Offset: 0

Author

Luis Mantilla, Feb 28 2021

Keywords

Examples

			a(0) = 1 : the empty word.
a(1) = 2 : {b, c}.
a(2) = 5 : {aa, bb, cc, bc, cb}.
a(3) = 14 : {aab, aac, aba, aca, baa, bbb, bbc, bcb, bcc, caa, cbb, cbc, ccb, bbb}.
a(4) = 25 : {aaaa, aabb, aabc, aacb, aacc, abab, abac, abba, abca, acab, acac, acba, baab, baac, baba, baca, bbaa, bcaa, caab, caac, caba, caca, cbaa, ccaa, acca}.
		

References

  • Rodrigo de Castro, Teoría de la computación, 2004, unilibros.

Crossrefs

Bisection gives: A080856 (even part).

Formula

a(n) = 4*a(n-2) - 6*a(n-4) + 4*a(n-6) - a(n-8).
G.f.: (10*x^7-13*x^6+46*x^5+11*x^4+6*x^3+x^2+2*x+1)/((x-1)^4*(x+1)^4).
a(n) = 2*n + 8*C(n,3) if n is odd, a(n) = 1 + 4*C(n,2) if n is even. - Alois P. Heinz, Mar 01 2021