A360425 Indices of records in A018804.
1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 28, 30, 36, 40, 42, 48, 54, 56, 60, 72, 80, 84, 90, 105, 108, 120, 140, 144, 168, 180, 210, 240, 252, 270, 280, 288, 300, 330, 336, 360, 420, 480, 504, 540, 600, 630, 660, 720, 840, 990, 1008, 1080, 1200, 1260, 1440
Offset: 1
Keywords
Examples
A018804(36) = 168 is the largest value among the first 36 terms of A018804, so 36 is a term here; since it is the 18th value that sets a new record, a(18) = 36.
Links
- David A. Corneth, Table of n, a(n) for n = 1..286
- Matthew Russell Downey, On Bifurcations And Beauty (2023): pages 40-43.
Programs
-
Mathematica
f[p_, e_] := (e*(p - 1)/p + 1)*p^e; pil[n_] := Times @@ (f @@@ FactorInteger[n]); seq[nmax_] := Module[{p, pm = 0, s = {}}, Do[If[(p = pil[n]) > pm, pm = p; AppendTo[s, n]], {n, 1, nmax}]; s]; seq[1200] (* Amiram Eldar, Feb 13 2023 *)
-
PARI
f(n) = sumdiv(n, d, n*eulerphi(d)/d); \\ A018804 lista(nn) = my(r=0, list=List()); for (n=1, nn, my(m=f(n)); if (m > r, listput(list, n); r = m);); Vec(list); \\ Michel Marcus, Feb 26 2023
-
Python
from sympy import factorint from math import prod def A018804(m): return prod(p**(e-1)*((p-1)*e+p) for p, e in factorint(m).items()) record = 0 for m in range(1, 2000): value = A018804(m) if value > record: record = value print(m, end=", ")
Formula
Conjecture: a(n) ~ exp(4*(n-1)/21). - Matthew Russell Downey, Jul 25 2023
Comments