A285438 Perfect powers that are also the sum of two powers of a prime p.
4, 8, 9, 16, 32, 36, 64, 128, 144, 256, 324, 512, 576, 1024, 2048, 2304, 2744, 2916, 4096, 8192, 9216, 16384, 26244, 32768, 36864, 65536, 131072, 147456, 236196, 262144, 524288, 589824, 941192, 1048576, 2097152, 2125764, 2359296, 4194304, 8388608, 9437184
Offset: 1
Keywords
Examples
324 = 18^2 = 3^4 + 3^5.
Links
- Robert Israel, Table of n, a(n) for n = 1..6655
- W. Weakley, Problem 11936, Amer. Math. Monthly, 123 (2016), 941.
Programs
-
Maple
N:= 10^9: # to get all terms <= N R1:= {seq(2^i,i=2..ilog2(N))}: R2:= {seq(9*2^(2*r), r=0..ilog2(floor(N/9))/2)}: R3:= {seq(seq(2^k*(2^k-1)^(r*k),r=1..floor(log[2^k-1](N/2^k)/k)),k=select(t -> isprime(2^t-1),[$2..ilog2(N)]))}: sort(convert(R1 union R2 union R3, list)); # Robert Israel, Apr 25 2017
-
PARI
upto(nn) = {my(v=List([]), k=1); for(r=2, logint(nn, 2), listput(v, 2^r)); for(r=0, logint(nn\9, 4), listput(v, 9*4^r)); while((2*2^k-2)^k
Jinyuan Wang, Nov 30 2019
Extensions
a(19)-a(40) from Robert Israel, Apr 25 2017
Comments