cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Oliver Bel

Oliver Bel's wiki page.

Oliver Bel has authored 2 sequences.

A239937 Numbers k such that DigitSum(k^2) > DigitSum((k+1)^2).

Original entry on oeis.org

3, 7, 8, 9, 14, 17, 19, 24, 26, 28, 29, 31, 33, 34, 37, 38, 39, 43, 44, 47, 48, 53, 54, 57, 59, 63, 64, 67, 69, 70, 74, 77, 78, 79, 83, 84, 87, 88, 89, 93, 94, 97, 98, 99, 104, 107, 109, 114, 117, 118, 119, 122, 124, 126, 128, 129, 133, 134, 137, 138, 141, 143
Offset: 1

Author

Oliver Bel, Mar 29 2014

Keywords

Examples

			For k=3, we have DigitSum(3^2) = 9 > 7 = DigitSum(4^2).
		

Crossrefs

Cf. A007953 (sum of digits of n), A004159 (sum of digits of n^2).

Programs

Extensions

More terms from Jon E. Schoenfield, Mar 29 2014

A239935 Numbers k such that DigitSum(3^k) > DigitSum(3^(k+1)).

Original entry on oeis.org

11, 14, 15, 18, 20, 27, 29, 31, 34, 38, 41, 43, 47, 48, 50, 53, 54, 58, 59, 63, 64, 65, 67, 69, 71, 72, 75, 77, 79, 83, 88, 90, 94, 98, 99, 102, 103, 107, 109, 112, 114, 118, 119, 123, 125, 131, 132, 134, 136, 139, 141, 142, 146, 150, 154, 159, 161, 164, 167
Offset: 1

Author

Oliver Bel, Mar 29 2014

Keywords

Examples

			For k=11, we have DigitSum(3^11) = 27 > 18 = DigitSum(3^12).
		

Crossrefs

Programs

  • Maple
    N:= 1000: # to get the first N terms
    threen:= 3:
    digsum:= 3:
    count:= 0:
    for n from 1 while count < N do
      threen:= 3*threen;
      oldsum:= digsum;
      digsum:= convert(convert(threen,base,10),`+`);
      if oldsum > digsum then
         count:= count+1;
         A239935[count]:= n;
      fi
    od: # Robert Israel, Apr 18 2014
  • Mathematica
    lis = Table[Total[IntegerDigits[3^n, 10]], {n, 1, 100}];
    Flatten[Position[Greater @@@ Partition[lis, 2, 1], True]]
  • PARI
    isok(k) = sumdigits(3^k) > sumdigits(3^(k+1)); \\ Michel Marcus, Jul 03 2021

Extensions

More terms from Jon E. Schoenfield, Mar 29 2014