A371896 a(n) is the length of the uninterrupted sequence of primes generated by the polynomial f(x) = x^2 + x + p for x=0,1,..., where p=A001359(n).
2, 4, 10, 16, 2, 40, 2, 2, 4, 3, 2, 2, 2, 3, 2, 4, 2, 2, 2, 3, 5, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 3, 2, 3, 3, 2, 2, 2, 2, 4, 2, 2, 7, 2, 3, 2, 5, 2, 4, 4, 6, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 3, 5, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2
Offset: 1
Keywords
Examples
For n=6, p = A001359(n) = 41 and f(x) = x^2 + x + 41 is Euler's polynomial which generates primes f(x) for x=0,1,2,...,39, which is 40 terms so a(6) = 40 (cf. A202018).
References
- L. Euler, Nouveaux Mémoires de l'Académie royale des Sciences, 1772, p. 36.
Links
- Peter Rowlett, Table of n, a(n) for n = 1..10000
Comments