A245323 a(n) = F(6*n-3)*(L(2*n-1)+1), where F = A000045 are the Fibonacci and L = A000032 are the Lucas numbers.
4, 170, 7320, 328380, 15124186, 704915600, 33014404692, 1549142827050, 72743819556328, 3416820019114700, 160507201018772634, 7540231471940495520, 354226959651753624100, 16641065639596669234730, 781774759322033582085816, 36726752905662141638238300
Offset: 1
Examples
Example: for n = 5, F(15) = 610, L(5) = 11, then a(5) = 610*12 = 7320 which is 5555 in base 11; F(5) = 5.
Links
- Index entries for linear recurrences with constant coefficients, signature (72,-1304,6066,-1304,72,-1).
Programs
-
Mathematica
LinearRecurrence[{72,-1304,6066,-1304,72,-1}, {4,170,7320,328380,15124186,704915600},30] (* Harvey P. Dale, Aug 26 2014 *) Table[Fibonacci[6 n - 3] (LucasL[2 n - 1] + 1), {n, 16}] (* Michael De Vlieger, Oct 21 2016 *)
-
PARI
vector(50, m, fibonacci(6*m-3)*(lucas(2*m-1)+1)) \\ Colin Barker, Jul 18 2014
Formula
a((n-1)/2) = F(3*n)*(L(n)+1) for any positive odd n. [Corrected by M. F. Hasler, Oct 20 2016]
a(n) = F(n)*(L(n)^3+L(n)^2+L(n)+1).
G.f.: 2*x*(51*x^4-622*x^3+148*x^2-59*x+2) / ((x^2-47*x+1)*(x^2-18*x+1)*(x^2-7*x+1)). - Colin Barker, Jul 18 2014
Extensions
More terms from Colin Barker, Jul 18 2014
Edited and partially corrected by M. F. Hasler, Oct 09 and Oct 20 2016
Comments