cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Raghavendra Ugare

Raghavendra Ugare's wiki page.

Raghavendra Ugare has authored 2 sequences.

A239282 a(n) = A045917(n)*prime(n).

Original entry on oeis.org

0, 3, 5, 7, 22, 13, 34, 38, 46, 58, 93, 111, 123, 86, 141, 106, 236, 244, 134, 213, 292, 237, 332, 445, 388, 303, 515, 321, 436, 678, 381, 655, 822, 278, 745, 906, 785, 815, 1169, 692, 895, 1448, 955, 772, 1773, 796, 1055, 1561, 681, 1374, 1864, 1195, 1446, 2008
Offset: 1

Author

Raghavendra Ugare, Mar 14 2014

Keywords

Crossrefs

Programs

  • Mathematica
    (*Returns the various ways a number (presumed to be even) can be split as a sum of 2 Primes.*)
    getGoldBachSplits[n_Integer] := Module[{i, splits = {}, a, b},
      (
       For[i = 1,
        Prime[i] < n,
        i++,
        a = Prime[i] ;
        b = n - Prime[i];
        If[PrimeQ[b],
         If[MemberQ[splits, {b, a}], Null,
          AppendTo[splits, {a, b}]],
         Null];
        ]; (*End For-loop...*)
       splits
       )
      ]
    (* Now we generate our series...*)
    series[n_] :=
    Module[{}, (Table[Prime[i]*Length[getGoldBachSplits[2 i]], {i, 2, n}])]

A191867 Numbers n which are both the sum of two nonzero squares and the concatenation of the decimal representation of two nonzero squares.

Original entry on oeis.org

41, 116, 125, 136, 149, 164, 169, 181, 369, 416, 425, 436, 449, 464, 481, 641, 916, 925, 936, 949, 964, 981, 1009, 1225, 1256, 1289, 1361, 1576, 1616, 1625, 1636, 1649, 1664, 1681, 1961, 2516, 2525, 2536, 2549, 2561, 2564, 2581, 3616, 3625, 3636, 3649, 3664
Offset: 1

Author

Raghavendra Ugare, Jun 18 2011

Keywords

Comments

It would be interesting to investigate such numbers w.r.t. higher powers and larger n.

Examples

			The smallest such number is 41, since it is both the sum of two squares (i.e., 4^2, 5^2) and the concatenation of two squares (i.e., 2^2, 1^2).
3649 also belongs to this sequence because it is sum of two squares (i.e., 60^2, 7^2) and the concatenation of two squares (i.e., 6^2, 7^2).
		

Crossrefs

Programs

  • Magma
    z:=65; T:=Sort([ s: a in [b..z], b in [1..z] | s le z^2 where s is a^2+b^2 ]); SplitToSquares:=function(n); V:=[]; S:=Intseq(n); for j in [1..#S-1] do A:=[ S[k]: k in [1..j] ]; a:=Seqint(A); B:=[ S[k]: k in [j+1..#S] ]; b:=Seqint(B); if a gt 0 and A[#A] gt 0 and IsSquare(a) and IsSquare(b) then Append(~V, []); end if; end for; return V; end function; U:=[ p: j in [1..#T] | P ne [] where P is SplitToSquares(p) where p is T[j] ]; [ U[j]: j in [1..#U] | j eq 1 or U[j-1] ne U[j] ]; // Klaus Brockhaus, Jun 19 2011
    
  • Mathematica
    (* find numbers that can be split as the SUM of two powers (squares, cubes, etc.) and also as CONCATENATION of the same powers *)
    siamesePowers[n_, power_] := Module[
    {listOfSumOfPowers, a, b, i, listOfConcatenatedPowers},
    listOfSumOfPowers = Outer[Plus, Table[{i^power}, {i, 1, n}], Table[{i^power}, {i, 1, n}]] // Flatten;
    concatNumbers[a_, b_] := IntegerDigits[{a, b}] // Flatten // FromDigits;
    listOfConcatenatedPowers := Outer[concatNumbers, Table[i^power, {i, 1, n}], Table[i^power, {i, 1, n}]] // Flatten;
    (* The intersection of these 2 lists is the set of our special Siamese numbers *)
    Intersection[listOfSumOfPowers, listOfConcatenatedPowers]
    ]
    siamesePowers[30, 2] (* Generate the first 30 such numbers for squares *)
  • PARI
    is_A191867(n) = for(p=10,n, issquare(n\p) && issquare(n%p) && n%p*10>=p && return(is_A000404(n)); p=p*10-1)  \\ M. F. Hasler, Jun 19 2011