cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Robert Dougherty-Bliss

Robert Dougherty-Bliss's wiki page.

Robert Dougherty-Bliss has authored 23 sequences. Here are the ten most recent ones:

A365469 Number of n X n nonnegative integer arrays with upper left entry 0, lower right entry n - 6, every value within 5 of its king-move distance from the upper left, and every value increasing by 0 or 1 with every step right, diagonally southeast, or down.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 923, 414638, 141905658, 44926520946, 14490345222595, 4982468227997168, 1856518533812384105, 750167381136816327009, 326628155352701098746754, 151933161224857150407326456, 74864085012461648054019799968, 38785037369022058785365519932029
Offset: 1

Author

Robert Dougherty-Bliss, Sep 04 2023

Keywords

Examples

			Example for n = 8:
  00011112
  11111122
  22222222
  22222222
  22222222
  22222222
  22222222
  22222222
		

Crossrefs

Formula

Conjecture: a(n) ~ (2^4 / (3^23 * Pi^2)) * 1024^n / n^10.

A365468 Number of n X n nonnegative integer arrays with upper left entry 0, lower right entry n - 5, every value within 4 of its king-move distance from the upper left, and every value increasing by 0 or 1 with every step right, diagonally southeast, or down.

Original entry on oeis.org

0, 0, 0, 0, 1, 251, 35176, 4105312, 466029138, 54944041476, 6886218018445, 920364154307990, 130498580283240363, 19482086451147555715, 3039784702880850466554, 492560752706827973431360, 82451674043232981553367317, 14196926753609833253834234271
Offset: 1

Author

Robert Dougherty-Bliss, Sep 04 2023

Keywords

Examples

			Example for n = 7:
  0011112
  0111222
  0111222
  0112222
  0112222
  1111222
  2222222
		

Crossrefs

Formula

Conjecture: a(n) ~ (2^2 / (3^16 * Pi^2)) * 256^n / n^6.

A364701 Pseudoprimes corresponding to a Perrin-like primality test.

Original entry on oeis.org

1531398, 114009582, 940084647, 4206644978, 7962908038, 20293639091, 41947594698
Offset: 1

Author

Robert Dougherty-Bliss, Aug 03 2023

Keywords

Comments

The sequence b(n) defined by the generating function (3*x^4+5*x^2+6*x-7)/(4*x^7+x^4+x^2+x-1) has the property that b(p) == 1 (mod p) if p is a prime. A pseudoprime for b(n) is a composite number k such that b(k) == 1 (mod k).
The first seven pseudoprimes are the only ones up to 10^12.

Examples

			The value of b(1531398) is a 399290-digit number which is congruent to 1 modulo 1531398 = 2 * 3 * 11 * 23203.
		

Crossrefs

b(n) is A362923.

A351916 a(1) = a(2) = 1; for n >= 2, a(n+1) = (a(n)^7 + 1)/a(n-1).

Original entry on oeis.org

1, 1, 2, 129, 297233651245505, 1588898389043626055434220300433167237829218942966252641093888571632886068535351219199489258571766594
Offset: 1

Author

Robert Dougherty-Bliss, Feb 25 2022

Keywords

Comments

a(7) has 680 digits.

Crossrefs

Programs

  • Maple
    a:=proc(n) option remember: if n <= 2 then 1: else (a(n-1)^7+1)/a(n-2): fi: end:

A346601 Record values in A346599.

Original entry on oeis.org

1, 3, 4, 5, 15, 45, 91, 187, 703, 1891, 2701, 3337, 12403, 18721, 38503, 49141, 79003, 88831, 104653, 146611, 188191, 218791, 226801, 269011, 286903, 385003, 497503, 597871, 665281, 721801, 736291, 765703, 873181, 954271, 1056331, 1314631, 1373653, 1537381, 1755001
Offset: 1

Author

Keywords

Comments

These are the values of m (see A344005) that take a record number of steps to appear. See A346600 for their indices.

Programs

  • Mathematica
    max=0;lst={};Do[g=(k=1;n=1;While[m=1;While[!Divisible[m(m+1),n],m++];m!=i,n++];n);If[g>max,AppendTo[lst,n];max=g],{i,100}];lst (* Giorgos Kalogeropoulos, Jul 29 2021 *)

Extensions

More terms from Chai Wah Wu, Jul 29 2021

A346600 Indices of records in A346599.

Original entry on oeis.org

1, 2, 3, 4, 5, 9, 13, 33, 37, 61, 73, 141, 157, 193, 277, 313, 397, 421, 457, 541, 613, 661, 673, 733, 757, 877, 997, 1093, 1153, 1201, 1213, 1237, 1321, 1381, 1453, 1621, 1657, 1753, 1873, 1933, 1993, 2017, 2137, 2341, 2473, 2557, 2593, 2797, 2857, 2917, 3061
Offset: 1

Author

Keywords

Crossrefs

Programs

  • Mathematica
    max=0;Monitor[Do[g=(k=1;n=1;While[m=1;While[!Divisible[m(m+1),n],m++];m!=s,n++];n);If[g>max,Print@s;max=g],{s,3000}],s] (* Giorgos Kalogeropoulos, Jul 29 2021 *)

Extensions

More terms from Chai Wah Wu, Jul 29 2021

A346599 Smallest k such that A344005(k) = n.

Original entry on oeis.org

1, 3, 4, 5, 15, 7, 8, 9, 45, 11, 33, 13, 91, 35, 16, 17, 51, 19, 76, 84, 77, 23, 69, 25, 65, 27, 63, 29, 87, 31, 32, 88, 187, 85, 180, 37, 703, 247, 104, 41, 123, 43, 172, 99, 115, 47, 141, 49, 175, 255, 204, 53, 159, 135, 280, 133, 551, 59, 177, 61, 1891, 217, 64, 160, 143, 67
Offset: 1

Author

Keywords

Examples

			A344005(15) = 5 is the first appearance of 5 in A344005, so a(5) = 15.
		

Crossrefs

Programs

  • Mathematica
    Array[(k=1;n=1;While[m=1;While[!Divisible[m(m+1),n],m++];m!=#,n++];n)&,70] (* Giorgos Kalogeropoulos, Jul 29 2021 *)
  • PARI
    f(n) = my(m=1); while (m*(m+1) %n, m++); m; \\ A344005
    a(n) = my(k=1); while (f(k) !=n, k++); k; \\ Michel Marcus, Jul 29 2021

A346598 a(n) is the number of terms in A344005 that are equal to n.

Original entry on oeis.org

2, 2, 2, 3, 2, 4, 3, 5, 2, 4, 4, 6, 2, 4, 7, 5, 4, 6, 4, 3, 4, 4, 6, 8, 4, 6, 7, 6, 6, 8, 5, 7, 4, 6, 4, 9, 2, 4, 8, 8, 6, 8, 4, 10, 8, 4, 8, 13, 6, 6, 7, 6, 6, 6, 8, 11, 4, 4, 10, 12, 2, 8, 13, 8, 8, 8, 4, 6, 8, 8, 10, 12, 2, 8, 9, 6, 6, 8, 8, 17, 6, 4, 10, 10, 6, 4, 11, 8, 10, 10, 8, 7, 4, 6, 11, 12
Offset: 1

Author

Keywords

Comments

If A344005(n) = m then n <= m*(m+1).

Examples

			A344005(n) is equal to 4 just for n = 5, 10, and 20, so a(4) = 3.
		

Crossrefs

Programs

A346596 Let m = A344005(n) = smallest m such that n divides m*(m+1); a(n) = max(gcd(n,m), gcd(n,m+1)).

Original entry on oeis.org

1, 2, 3, 4, 5, 3, 7, 8, 9, 5, 11, 4, 13, 7, 5, 16, 17, 9, 19, 5, 7, 11, 23, 8, 25, 13, 27, 7, 29, 6, 31, 32, 11, 17, 7, 9, 37, 19, 13, 8, 41, 7, 43, 11, 9, 23, 47, 16, 49, 25, 17, 13, 53, 27, 11, 8, 19, 29, 59, 15, 61, 31, 9, 64, 13, 11, 67, 17, 23, 14, 71, 9, 73, 37, 25, 19
Offset: 1

Author

Keywords

Comments

This is the maximum of A345992 and A345993.

Crossrefs

Programs

  • PARI
    f(n) = my(m=1); while ((m*(m+1)) % n, m++); m; \\ A344005
    a(n) = my(m=f(n)); max(gcd(n,m), gcd(n,m+1)); \\ Michel Marcus, Aug 06 2021
    (Python 3.8+)
    from math import gcd, prod
    from itertools import combinations
    from sympy import factorint
    from sympy.ntheory.modular import crt
    def A346596(n):
        if n == 1:
            return 1
        plist = tuple(p**q for p, q in factorint(n).items())
        return n if len(plist) == 1 else max(gcd(n,s:=int(min(min(crt((m, n//m), (0, -1))[0], crt((n//m, m), (0, -1))[0]) for m in (prod(d) for l in range(1, len(plist)//2+1) for d in combinations(plist, l))))),gcd(n,s+1)) # Chai Wah Wu, Jun 17 2022

A345999 a(n) = (m+1)/gcd(m+1,n), where m = A344005(n).

Original entry on oeis.org

2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 4, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 4, 1, 2, 2, 1, 1, 8, 3, 1, 1, 1, 1, 1, 5, 2, 1, 1, 1, 1, 1, 1, 1, 7, 1, 10, 3, 1, 1, 2, 6, 1, 1, 4, 11, 1, 1, 5, 1
Offset: 1

Author

Keywords

Comments

This is (A344005(n)+1)/A345993(n).

Crossrefs