cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Robin Hankin

Robin Hankin's wiki page.

Robin Hankin has authored 1 sequences.

A328494 Constant term in the expansion of (1+x+y+1/x+1/y)^n without assuming commutativity.

Original entry on oeis.org

1, 1, 5, 13, 53, 181, 713, 2689, 10661, 41989, 168785, 680329, 2770409, 11331529, 46639157, 192762013, 800228069, 3333843685, 13936599857, 58432259977, 245665962113, 1035412181761, 4373982501245, 18516210906853, 78536526586553, 333712398776281, 1420364536094093
Offset: 0

Author

Robin Hankin, Oct 16 2019

Keywords

Comments

Related to A035610 which is the constant term of (x+y+1/x+1/y)^(2n).
If commutativity is assumed then the constant term of (1+x+y+1/x+1/y)^n is given by A201805(n). - Andrew Howroyd, Oct 25 2019

Crossrefs

Programs

  • Maple
    h := n -> GAMMA(n+1/2)/GAMMA(n+2)*hypergeom([2, 1-n], [n+2], -3):
    a := n -> 3-(-3)^n-5^n+(1/sqrt(Pi))*add(12^(k+1)*binomial(n, 2*k)*h(k), k=1..n/2):
    seq(simplify(a(n)), n=0..26); # Peter Luschny, Oct 25 2019
  • PARI
    a(n)={my(p=3/(1+2*sqrt(1-12*x+O(x*x^(n\2))))); sum(k=0, n\2, binomial(n, 2*k)*polcoef(p,k))} \\ Andrew Howroyd, Oct 25 2019
  • R
    library("freealg")
    g <- function(p,string){constant(as.freealg(string)^p)} sapply(0:7,g,"1+x+y+X+Y")
    

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k)*A035610(k). - Andrew Howroyd, Oct 25 2019

Extensions

Terms a(8) and beyond from Andrew Howroyd, Oct 25 2019