A198245 Euler primes: Primes p that divide E(p - 3), where E(k) is the k-th Euler number.
149, 241, 2946901, 16467631, 17613227, 327784727, 426369739, 1062232319
Offset: 1
References
- J. B. Cosgrave, A Mersenne-Wieferich Odyssey, Manuscript, May 2022. See Section 18.8.
Links
- A. R. Booker, S. Hathi, M. J. Mossinghoff and T. S. Trudgian, Wolstenholme and Vandiver primes, The Ramanujan Journal, 58 (2022), 913-941, arXiv:2101.11157. See Theorem 1, but beware errors.
- John B. Cosgrave and Karl Dilcher, On a congruence of Emma Lehmer related to Euler numbers, Acta Arithmetica 161 (2013), 47-67.
- Shehzad Hathi, Michael J. Mossinghoff, and Timothy S. Trudgian, Wolstenholme and Vandiver primes, arXiv:2101.11157 [math.NT], 2021.
- R. J. McIntosh and E. L. Roettger, A search for Fibonacci-Wieferich and Wolstenholme primes, Math. Comp. vol 76, no 260 (2007) pp 2087-2094.
- Romeo Mestrovic, An extension of a congruence by Kohnen, arXiv: 1109.2340v3 [math.NT] (2011).
- Romeo Mestrovic, A search for primes p such that Euler number E(p-3) is divisible by p, arXiv: 1212.3602 [math.NT] (2012).
- Zhi Wei Sun, Letter to the Number Theory List, Feb 8 2010
- Zhi Wei Sun, Super congruences and Euler numbers, Sci. China Math., 54 (2011), in press, arXiv: 1001.4453 [math.NT] (2011).
- Eric Weisstein's World of Mathematics, Euler Number.
- Wikipedia, Euler Number.
- Hiroaki Yamanouchi, Primes p (5 <= p < 2*10^9) such that E(p-3) == A (mod p) for some integer A in [-1000, 1000].
Programs
-
Mathematica
Select[Prime[Range[2, 200]], IntegerQ[EulerE[# - 3]/#] &] (* Alonso del Arte, Oct 31 2011 *)
Extensions
a(4)-a(8) from Hiroaki Yamanouchi, Aug 06 2017
Comments