A336251 a(1) = 15; for n > 1, a(n)^2 is the smallest square that begins with a(n-1) in base 6.
15, 57, 111, 155, 183, 199, 508, 812, 171, 471, 319, 643, 913, 1088, 2909, 11650, 9518, 21074, 31357, 93691, 396693, 55540, 50905, 119374, 182804, 226216, 251647, 265415, 111280, 72055, 142024, 13567, 25160, 34262, 39982, 105795, 172093, 537634
Offset: 1
Examples
The first 10 a(n) alongside the base 6 representations of a(n) and squares of a(n+1): n a(n) a(n) b6 a(n+1)^2 b6 -- ---- ------- ----------- 1 15 23 23013 2 57 133 133013 3 111 303 303121 4 155 415 415013 5 183 503 503201 6 199 531 5310424 7 508 2204 22044304 8 812 3432 343213 9 171 443 4431013 10 471 2103 2103041
Links
- Sean Lipton, Table of n, a(n) for n = 1..600
Programs
-
PARI
lista(nn) = {my(a = 15); for (n=2, nn, print1(a, ", "); my(i=1); while((sqrtint((a+1)*6^i-1) <= sqrtint(a*6^i-1)), i++); a = ceil(sqrt(a*6^i)););} \\ Michel Marcus, Jul 15 2020
Formula
a(n+1) = ceiling(sqrt(a(n)*6^i)) such that floor(sqrt((a(n)+1)*6^i-1)) > floor(sqrt(a(n)*6^i-1)) where i is a whole number and minimized.
For n > 481, a(n) = a(n+10).
Comments