cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Shashank Sharma

Shashank Sharma's wiki page.

Shashank Sharma has authored 1 sequences.

A178070 Primes dividing repunits R(10^n) for some n.

Original entry on oeis.org

11, 17, 41, 73, 101, 137, 251, 257, 271, 353, 401, 449, 641, 751, 1201, 1409, 1601, 3541, 4001, 4801, 5051, 9091, 10753, 15361, 16001, 19841, 21001, 21401, 24001, 25601, 27961, 37501, 40961, 43201, 60101, 62501, 65537, 69857, 76001, 76801, 160001, 162251, 163841, 307201, 453377, 524801, 544001, 670001, 952001, 976193, 980801
Offset: 1

Author

Shashank Sharma, May 19 2010, Aug 04 2010

Keywords

Comments

Repunits are the numbers consisting entirely of 1's. The number represented by R(10^n) contains 10^n digits with all 1's. E.g., R(10^1) = 1111111111.
A prime p > 5 is here if the multiplicative order of 10 (mod p) is of the form 2^i*5^j, with i and j nonnegative.
Includes all terms > 5 of A077497. - Robert Israel, Nov 05 2024

Examples

			17 divides R(10^4), so is in the sequence. - _Phil Carmody_, May 26 2011
Note that R(10^n) == 1 mod 3 for all n, so 3 is not a member. - _N. J. A. Sloane_, Jun 18 2014
		

Crossrefs

Programs

  • Maple
    filter:= proc(p) local v;
      if not isprime(p) then return false fi;
      v:= numtheory:-order(10,p);
      v = 2^padic:-ordp(v,2) * 5^padic:-ordp(v,5)
    end proc:
    select(filter, [seq(i, i=7 .. 10^6, 2)]); # Robert Israel, Nov 05 2024
  • Mathematica
    Select[Prime[Range[4, 100000]], Complement[First /@ FactorInteger[MultiplicativeOrder[10, #]], {2, 5}] == {} &] (* T. D. Noe, May 26 2011 *)
  • PARI
    g=10^30;forprime(p=7,1000000,z=znorder(Mod(10,p));if(gcd(z,g)==z,print1(p", "))) \\ Phil Carmody, May 26 2011
    
  • PARI
    upTo(lim)=my(v=List(),g=10^(log(lim)\log(2))); forprime(p=7,lim,if(g%znorder(Mod(10,p))==0, listput(v,p))); Vec(v) \\ Charles R Greathouse IV, May 26 2011

Extensions

Arbitrary limit removed and sequence extended by Phil Carmody, May 26 2011