cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Sigurd Kittilsen

Sigurd Kittilsen's wiki page.

Sigurd Kittilsen has authored 1 sequences.

A328057 Number of graphs with n nodes having fewer than n edges.

Original entry on oeis.org

1, 2, 3, 7, 14, 33, 81, 215, 601, 1808, 5721, 19133, 67218, 247377, 950679, 3806360, 15837196, 68336348, 305196782, 1408294018, 6703197359, 32861879994, 165699114887, 858237346563, 4560774579700, 24839216194151, 138505159164086, 789982051646096, 4604866422703625
Offset: 1

Author

Sigurd Kittilsen and Lars Tveito, Oct 07 2019

Keywords

Crossrefs

Programs

  • Mathematica
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_, t_] := Product[g = GCD[v[[i]], v[[j]]]; t[v[[i]]*v[[j]]/g]^g, {i, 2, Length[v]}, {j, 1, i - 1}]*Product[c = v[[i]]; t[c]^Quotient[c - 1, 2]*If[OddQ[c], 1, t[c/2]], {i, 1, Length[v]}];
    a[n_] := a[n] = Module[{s = O[x]^n}, Do[s += permcount[p]*edges[p, 1 + x^# + O[x]^n &], {p, IntegerPartitions[n]}]; SeriesCoefficient[s/(1-x), {x, 0, n - 1}]/n!];
    Table[Print[n, " ", a[n]]; a[n], {n, 1, 30}] (* Jean-François Alcover, Jan 08 2021, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v,t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i],v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
    a(n)={my(s=O(x^n)); forpart(p=n, s+=permcount(p)*edges(p, i->1 + x^i + O(x^n))); polcoef(s/(1-x), n-1)/n!} \\ Andrew Howroyd, Oct 22 2019

Extensions

Terms a(17) and beyond from Andrew Howroyd, Oct 22 2019