cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Simon Jensen

Simon Jensen's wiki page.

Simon Jensen has authored 3 sequences.

A363657 Numbers m where A217854(m) is a record minimum.

Original entry on oeis.org

1, 4, 9, 16, 36, 100, 144, 324, 400, 576, 900, 1764, 2304, 3600, 7056, 8100, 14400, 28224, 32400, 44100, 57600, 108900, 112896, 129600, 176400, 396900, 435600, 518400, 608400, 705600, 1587600, 2822400, 5336100, 6350400, 14288400, 15681600, 17640000, 21344400
Offset: 1

Author

Simon Jensen, Jun 13 2023

Keywords

Comments

(-m)^tau(m) < 0 and (-m)^tau(m) < (-k)^tau(k) for all positive k < m, where tau is the number of divisors function.
All terms are squares.
It is conjectured that if m is a term, then abs((-m)^tau(m)) <= abs((-k)^tau(k)) for some k < m. See the link.

Examples

			9 is a term since (-9)^tau(9) = (-9)^3 = -729 and -729 < (-k)^tau(k) for k = 1,...,8.
25 is not a term since (-25)^tau(5) = (-25)^3 = -15625 > (-16)^tau(16) = (-16)^5 = -1048576 and 16 < 25.
		

Programs

  • PARI
    isok(m) = my(x=(-m)^numdiv(m)); for (k=1, m-1, if (x >= (-k)^numdiv(k), return(0))); return(1); \\ Michel Marcus, Jun 18 2023

A363658 Positive numbers m where A217854(m) is positive and increases to a record.

Original entry on oeis.org

2, 3, 5, 6, 8, 10, 12, 18, 20, 24, 30, 40, 42, 48, 60, 72, 84, 90, 96, 108, 120, 168, 180, 240, 336, 360, 420, 480, 504, 540, 600, 630, 660, 672, 720, 840, 1080, 1260, 1440, 1680, 2160, 2520, 3360, 3780, 3960, 4200, 4320, 4620, 4680, 5040, 7560, 9240, 10080
Offset: 1

Author

Simon Jensen, Jun 13 2023

Keywords

Comments

(-m)^tau(m) > 0 and (-m)^tau(m) > (-k)^tau(k) for all positive k < m, where tau is the number of divisors function.
There are no squares in this sequence.
It appears that if n > 13, then a(n) = A067128(n). See the link.
Only a finite number of terms in A002093 can also be terms in this sequence. See the link.

Examples

			5 is a term since (-5)^tau(5) = (-5)^2 = 25 and 25 > (-k)^tau(k) for k = 1,...,4.
		

Programs

  • PARI
    isok(m) = my(x=(-m)^numdiv(m)); if (x>0, for (k=1, m-1, if (x <= (-k)^numdiv(k), return(0))); return(1)); \\ Michel Marcus, Aug 31 2023

A224914 Partial sums of A217854.

Original entry on oeis.org

-1, 3, 12, -52, -27, 1269, 1318, 5414, 4685, 14685, 14806, 3000790, 3000959, 3039375, 3090000, 2041424, 2041713, 36053937, 36054298, 100054298, 100248779, 100483035, 100483564, 110175797740, 110175782115, 110176239091, 110176770532, 110658660836
Offset: 1

Author

Simon Jensen, Apr 19 2013

Keywords

Comments

If there is some n > 47 such that a(n) < 0, then there is some k^2 > 47 such that a(k^2) < 0.
If n > 1 is a square number, then a(n) = a(n-1) - n^tau(n).
If n > 1 is a nonsquare number, then a(n) = a(n-1) + n^tau(n).
If n > 1 is a prime, then a(n) = a(n-1) + n^2.

Examples

			a(4) = a(1) + a(2) + a(3) + (-4)^tau(4) = (-1) + 3 + 12 + (-64) = -52.
		

Programs

  • Mathematica
    Accumulate@ Table[(-n)^DivisorSigma[0, n], {n, 28}] (* Michael De Vlieger, Mar 18 2016 *)
  • PARI
    a(n) = sum(k=1, n, (-k)^numdiv(k)); \\ Michel Marcus, Mar 18 2016

Formula

a(n) = Sum_{i=1..n} (-i)^tau(i) = Sum_{i=1..n} (-i)^A000005(i) = Sum_{i=1..n} A217854(i).