A355903 Variant of Stepping Stones problem: here the stone you place only needs to divide the sum of its 8 neighbors.
1, 27, 41, 67
Offset: 1
Examples
Illustration for a(2) = 27 (discovered by _Skylark Xentha Murphy-Davies_ and proved optimal by _Hugo van der Sanden_): . . . . . . . . . 21 20 . . . . . 23 13 9 18 . . . . . 12 5 4 . 14 25 . . 27 10 1 3 11 26 . . . . . 2 6 . 22 . . . 19 . 1 7 15 . . . . 17 16 8 . . . . . . . 24 . . . . . . . . .
Links
- Skylark Xentha Murphy-Davies and Hugo van der Sanden, Illustration for a(2) = 27 (Discovered by Skylark Xentha Murphy-Davies and proved optimal by Hugo van der Sanden.) [There are two choices for the 27 stone, indicated by dashed lines. The 27 in the top left corner is not part of the arrangement.]
- N. J. A. Sloane, Brady Haran and Pete McPartlan, Stones on an Infinite Chessboard, Numberphile video (2022).
- Hugo van der Sanden, Maximal examples for a(2), a(3), a(4)
Crossrefs
Cf. A337663.
Comments