A337663 Solution to stepping stone puzzle if we start with n 1's (see Comments).
1, 16, 28, 38, 49, 60
Offset: 1
Examples
Starting with n = 2 cells containing 1's the following strategy achieves a(2) = 16 (this is also shown in the link): +----+----+----+----+----+----+ | 9 | 5 | 10 | 11 | | | +----+----+----+----+----+----+ | | 4 | 1 | | | | +----+----+----+----+----+----+ | 12 | 8 | 3 | 2 | | 16 | +----+----+----+----+----+----+ | | | | 6 | 1 | 15 | +----+----+----+----+----+----+ | | | 13 | 7 | 14 | | +----+----+----+----+----+----+ Illustration for a(3) = 28 from _Fakih Karademir_, Aug 30 2022: (Start) . 24 . . . . . . 8 16 17 . . . 15 7 1 . 19 . . 22 . 6 2 . 20 . . 28 . 3 1 . 25 . . . . 4 5 . . . 21 . 9 18 23 . . 11 10 . . . . 12 1 . . . . . 26 13 14 . . . . . . 27 . . . (End) Illustration for a(4) = 38 from Arnauld Chevallier: . . . . . . . . . . . . . . . . 35 18 36 . 23 . 21 . 32 . . . . . . . 17 1 . 14 9 . 12 20 . . . . . . . 34 16 15 . 5 4 8 . . 26 27 . . . . . . 31 . 10 1 3 19 25 . 1 28 . . . . . . . 11 . 2 6 . 33 . 29 . . . . . . . 24 13 22 1 7 . . . . . . . . . . 37 . . 30 38 . . . . . . . . . . . . . . . . . . . From _Bert Dobbelaere_, Nov 01 2020: (Start) Illustration for a(6) = 60: . . . . . . . . . . . . . 47 24 48 . . . . . . . . . . . . . . . 23 1 49 . . . . . . . . . . . . 41 . 22 . 50 . . . . . . . . 51 . 36 . 20 21 43 . . . . . . . . . . 34 17 . 19 1 . . . . . . . . . . . . 16 1 18 38 58 59 . . . . . . . . 37 30 15 40 . 57 . . . . . . . . . . . . 7 8 . . . . . . . . . . . . 35 46 6 1 25 33 . . . . . . . . . 60 32 . 3 2 9 . . . . . . . . . . . . 28 4 1 31 11 45 . 52 . . . . . . . . 42 14 10 5 . . 12 13 39 . . . . . . . . 56 . 29 44 . . 1 26 . . . . . . . . . . . . . . 55 54 27 53 . . . . . . . (End)
Links
- Charlotte Darroch and Robert Gerbicz, a(n) <= 278*n and a(n) <= 183*n
- Robert Gerbicz, Proof that lim inf a(n)/n > 6
- Robert Gerbicz, C++ program to accompany above proof
- Andrew Howroyd, Illustration for a(5) = 49
- Peter Kagey and others, Extend the most recent "nice" OEIS sequence: stepping stone puzzle on a grid, Code Golf Stack Exchange, October 2020.
- Dmitry Kamenetsky, Some lower bounds for 7 <= n <= 9. [Shows a(7) >= 67, a(8) >= 74, a(9) >= 81.]
- Thomas Ladouceur, Illustration for a(2) = 16
- Thomas Ladouceur, Python (Jupyter) notebook for A337663 on Github.
- Skylark Xentha Murphy-Davies, Stones on an Infinite Chessboard in a Finite Spreadsheet [Many lower bounds, including a(n) >= 6*n for n >= 3]
- Hugo van der Sanden, Implementations in C and Perl
- N. J. A. Sloane, A lower bound of 6*n+3 for n >= 3, based on the optimal construction for n=2 (black) and continuing the obvious pattern of the red squares. Discovered by Menno Verhoeven, Jan 10 2022, and mentioned in a comment on the "Stones on an Infinite Chessboard" video.
- N. J. A. Sloane, Exciting New Numbers Sequences (video of talk), Mar 05 2021.
- N. J. A. Sloane, Brady Haran and Pete McPartlan, Stones on an Infinite Chessboard, Numberphile video (2022).
- N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, pp. 16-18.
- Mihael Tunik, Lower bound for n = 7 [Shows a(7) >= 69.]
- Tejo Vrush, a(n) <= 155*n
- Jonathan F. Waldmann, a(n) < 86*n + 32
- Jonathan F. Waldmann, a(n) < 79*n + C
- Mattias de Zalenski, Some lower bounds for 7 <= n <= 9. [Shows a(7) >= 68, a(8) >= 76, a(9) >= 82.]
- Al Zimmermann, Stepping Stones Programming Contest, August, 2022.
- Al Zimmermann, 12 solutions showing that a(7) >= 71. [Results from his programming contest, added by _N. J. A. Sloane_, Jan 07 2023]
- Al Zimmermann, Results from Programming Contest listing lower bounds 71, 80, 90, 99, 109, 118 for n = 7...12
Crossrefs
Formula
From Andrew Howroyd, Oct 08 2020: (Start)
a(n) >= 5*n - 4.
Proof: This follows by continuing the following simple construction:
+----+----+----+----+----+----+----+----+----+----+
| | | 4 | | | | | | 14 | |
+----+----+----+----+----+----+----+----+----+----+
| | 3 | 1 | 5 | | | | 13 | 1 | 15 |
+----+----+----+----+----+----+----+----+----+----+
| | 2 | | 6 | | | | 12 | | 16 |
+----+----+----+----+----+----+----+----+----+----+
| 1 | | | | 7 | | 11 | | | |
+----+----+----+----+----+----+----+----+----+----+
| | | | | 8 | 1 | 10 | | | |
+----+----+----+----+----+----+----+----+----+----+
| | | | | | 9 | | | | |
+----+----+----+----+----+----+----+----+----+----+
(End)
From Skylark Xentha Murphy-Davies, Jan 10 2022, added by N. J. A. Sloane: (Start)
a(n) >= 6*n - 6. [This has since been strengthened to a(n) >= 6*n for n >= 3 - see Comments and Link. - N. J. A. Sloane, Sep 14 2022]
Proof: This follows by continuing the following simple construction:
+----+----+----+----+----+----+----+----+----+----+
| 1 | | | | | | | | | |
+----+----+----+----+----+----+----+----+----+----+
| | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
+----+----+----+----+----+----+----+----+----+----+
| | | 1 | | | 1 | | | 1 | 10 |
+----+----+----+----+----+----+----+----+----+----+
| | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | |
+----+----+----+----+----+----+----+----+----+----+
(End)
Menno Verhoeven, Jan 10 2022, has shown that a(n) >= 6*n+3 for n >= 3. See my "Lower bound of 6n+3" link. This is obtained by starting from the a(2)=16 configuration. He remarks that by starting from a larger configuration one can improve the constant term 3, although not the multiplier 6. For example, starting from the a(6) configuration gives a(n) >= 6n+24 for n >= 6. - N. J. A. Sloane, Jan 10 2022
Extensions
a(1)-a(4) confirmed by Arnauld Chevallier
a(5) from Code Golf user xash (see Code Golf Stack Exchange link). - Peter Kagey, Oct 08 2020
a(5) independently confirmed by Andrew Howroyd, Oct 08 2020
a(6) from Bert Dobbelaere, Nov 01 2020
a(6) independently confirmed by Hugo van der Sanden, Nov 05 2020
Deleted an unproved upper bound. - N. J. A. Sloane, Jan 14 2022
a(7) >= 71 was found by Mark Beyleveld, Aug 07 2023 (see Links). - Al Zimmermann, Jan 02 2023
The programming contest also produced the lower bounds 80, 90, 99, 109, 118 for n = 8, ..., 12, respectively (see Links). Al Zimmermann, Jan 05 2023
Comments