cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Stephan Beyer

Stephan Beyer's wiki page.

Stephan Beyer has authored 2 sequences.

A271362 Number T(n,k) of series-reduced free trees with n nodes of which exactly k>=3 are leaves, k+1 <= n <= 2k-2.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 2, 4, 3, 1, 4, 6, 3, 1, 2, 10, 9, 4, 1, 8, 17, 12, 4, 1, 4, 22, 30, 16, 5, 1, 15, 47, 44, 20, 5, 1, 6, 53, 91, 67, 25, 6, 1, 32, 127, 158, 91, 30, 6, 1, 11, 121, 282, 258, 126
Offset: 4

Author

Stephan Beyer, Apr 05 2016

Keywords

Comments

The length of row n is floor((n-2)/2).

Examples

			    Irregular triangle begins
    n \ k 3   4   5   6   7  8
     4     1;
     5     1;
     6     1,  1;
     7     1,  1;
     8     1,  2,  1;
     9     2,  2,  1;
    10     2,  4,  3,  1;
    11     4,  6,  3,  1;
    12     2, 10,  9,  4, 1;
    13     8, 17, 12,  4, 1;
    14     4, 22, 30, 16, 5, 1;
    15    15, 47, 44, 20, 5, 1;
    ...
		

Crossrefs

Transpose of A271205.
Cf. A000014 (row sums), A345971.

Programs

  • PARI
    \\ using files hitree4.txt etc from McKay.
    nL(n, Tr) = { my(E = strsplit(Tr, "  "), u_v, Deg = vectorsmall(n));
    for(j = 1, n-1, u_v = strsplit(E[j], " "); u_v = eval(u_v);
       Deg[ u_v[1]+1 ]++; Deg[ u_v[2]+1 ]++); sum(v = 1, n, Deg[v] == 1)
    };
    Rows(r1, r2) = {my(F, C, nF); for(n = r1, r2,
    F = readstr(Str("hitree", n, ".txt")); C = vectorsmall(n-1);
    for(i = 1, #F, nF = nL(n, F[i]); C[nF]++ );
    print1(n" "); for(i=1, #C, if(C[i] > 0, print1(C[i]", "))); print() )
    }; \\ Washington Bomfim, Jul 09 2021

Formula

T(n,k) = A271205(k,n).

A271205 Number T(m,n) of series-reduced free trees with n nodes of which exactly m >= 3 are leaves, m+1 <= n <= 2m-2.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 4, 4, 2, 1, 3, 6, 10, 8, 4, 1, 3, 9, 17, 22, 15, 6, 1, 4, 12, 30, 47, 53, 32, 11, 1, 4, 16, 44, 91, 127, 121, 66, 18, 1, 5, 20, 67, 158, 282, 346, 292, 142, 37, 1, 5, 25, 91, 258, 539, 841, 921, 688, 306, 66, 1, 6, 30, 126, 397, 978, 1804, 2498, 2456, 1662, 672, 135, 1, 6, 36, 163, 588, 1636, 3550, 5856, 7260, 6489, 3978, 1483, 265, 1, 7, 42, 213, 838, 2638, 6495, 12554, 18636, 20946, 17082, 9629, 3316, 552, 1, 8
Offset: 3

Author

Stephan Beyer, Apr 01 2016

Keywords

Comments

The sequence of row sums a(m) = Sum_{n} T(m,n) is A007827.
The sequence of column sums a(n) = Sum_{m} T(m,n) is A000014.

Examples

			m\n | 3 4 5 6 7 8 9 10 11 12 13 14 15 16  17  18 19 20
-------------------------------------------------------
3   | . 1 . . . . .  .  .  .  .  .  .  .   .   .  .  .
4   | . . 1 1 . . .  .  .  .  .  .  .  .   .   .  .  .
5   | . . . 1 1 1 .  .  .  .  .  .  .  .   .   .  .  .
6   | . . . . 1 2 2  2  .  .  .  .  .  .   .   .  .  .
7   | . . . . . 1 2  4  4  2  .  .  .  .   .   .  .  .
8   | . . . . . . 1  3  6 10  8  4  .  .   .   .  .  .
9   | . . . . . . .  1  3  9 17 22 15  6   .   .  .  .
10  | . . . . . . .  .  1  4 12 30 47 53  32  11  .  .
11  | . . . . . . .  .  .  1  4 16 44 91 127 121 66 18
		

Crossrefs

Transpose of A271362.