A271362 Number T(n,k) of series-reduced free trees with n nodes of which exactly k>=3 are leaves, k+1 <= n <= 2k-2.
1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 2, 4, 3, 1, 4, 6, 3, 1, 2, 10, 9, 4, 1, 8, 17, 12, 4, 1, 4, 22, 30, 16, 5, 1, 15, 47, 44, 20, 5, 1, 6, 53, 91, 67, 25, 6, 1, 32, 127, 158, 91, 30, 6, 1, 11, 121, 282, 258, 126
Offset: 4
Examples
Irregular triangle begins n \ k 3 4 5 6 7 8 4 1; 5 1; 6 1, 1; 7 1, 1; 8 1, 2, 1; 9 2, 2, 1; 10 2, 4, 3, 1; 11 4, 6, 3, 1; 12 2, 10, 9, 4, 1; 13 8, 17, 12, 4, 1; 14 4, 22, 30, 16, 5, 1; 15 15, 47, 44, 20, 5, 1; ...
Links
- Washington Bomfim, Table of n, a(n) for n = 4..199
- B. D. McKay, Lists of Trees sorted by diameter and Homeomorphically irreducible trees, with <= 22 nodes.
Programs
-
PARI
\\ using files hitree4.txt etc from McKay. nL(n, Tr) = { my(E = strsplit(Tr, " "), u_v, Deg = vectorsmall(n)); for(j = 1, n-1, u_v = strsplit(E[j], " "); u_v = eval(u_v); Deg[ u_v[1]+1 ]++; Deg[ u_v[2]+1 ]++); sum(v = 1, n, Deg[v] == 1) }; Rows(r1, r2) = {my(F, C, nF); for(n = r1, r2, F = readstr(Str("hitree", n, ".txt")); C = vectorsmall(n-1); for(i = 1, #F, nF = nL(n, F[i]); C[nF]++ ); print1(n" "); for(i=1, #C, if(C[i] > 0, print1(C[i]", "))); print() ) }; \\ Washington Bomfim, Jul 09 2021
Formula
T(n,k) = A271205(k,n).
Comments