cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A000014 Number of series-reduced trees with n nodes.

Original entry on oeis.org

0, 1, 1, 0, 1, 1, 2, 2, 4, 5, 10, 14, 26, 42, 78, 132, 249, 445, 842, 1561, 2988, 5671, 10981, 21209, 41472, 81181, 160176, 316749, 629933, 1256070, 2515169, 5049816, 10172638, 20543579, 41602425, 84440886, 171794492, 350238175, 715497037, 1464407113
Offset: 0

Views

Author

Keywords

Comments

Other terms for "series-reduced tree": (i) homeomorphically irreducible tree, (ii) homeomorphically reduced tree, (iii) reduced tree, (iv) topological tree.
In a series-reduced tree, vertices cannot have degree 2; they can be leaves or have >= 2 branches.

Examples

			G.f. = x + x^2 + x^4 + x^5 + 2*x^6 + 2*x^7 + 4*x^8 + 5*x^9 + 10*x^10 + ...
The star graph with n nodes (except for n=3) is a series-reduced tree. For n=6 the other series-reduced tree is shaped like the letter H. - _Michael Somos_, Dec 19 2014
		

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 284.
  • D. G. Cantor, personal communication.
  • F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 232.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 62, Fig. 3.3.3.
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 526.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000055 (trees), A001678 (series-reduced planted trees), A007827 (series-reduced trees by leaves), A271205 (series-reduced trees by leaves and nodes).

Programs

  • Maple
    with(powseries): with(combstruct): n := 30: Order := n+3: sys := {B = Prod(C,Z), S = Set(B,1 <= card), C = Union(Z,S)}:
    G001678 := (convert(gfseries(sys,unlabeled,x) [S(x)], polynom)) * x^2: G0temp := G001678 + x^2:
    G059123 := G0temp / x + G0temp - (G0temp^2+eval(G0temp,x=x^2))/(2*x):
    G000014 := ((x-1)/x) * G059123 + ((1+x)/x^2) * G0temp - (1/x^2) * G0temp^2:
    A000014 := 0,seq(coeff(G000014,x^i),i=1..n); # Ulrich Schimke (ulrschimke(AT)aol.com)
  • Mathematica
    a[n_] := If[n<1, 0, A = x/(1-x^2) + x*O[x]^n; For[k=3, k <= n-1, k++, A = A/(1 - x^k + x*O[x]^n)^SeriesCoefficient[A, k]]; s = ((Normal[A] /. x -> x^2) + O[x]^(2n))*(1-x) + A*(2-A)*(1+x); SeriesCoefficient[s, n]/2]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 02 2016, adapted from PARI *)
  • PARI
    {a(n) = my(A); if( n<1, 0, A = x / (1 - x^2) + x * O(x^n); for(k=3, n-1, A /= (1 - x^k + x * O(x^n))^polcoeff(A, k)); polcoeff( (subst(A, x, x^2) * (1 - x) + A * (2 - A) * (1 + x)) / 2, n))}; /* Michael Somos, Dec 19 2014 */

Formula

G.f.: A(x) = ((x-1)/x)*f(x) + ((1+x)/x^2)*g(x) - (1/x^2)*g(x)^2 where f(x) is g.f. for A059123 and g(x) is g.f. for A001678. [Harary and E. M. Palmer, p. 62, Eq. (3.3.10) with extra -(1/x^2)*Hbar(x)^2 term which should be there according to eq.(3.3.14), p. 63, with eq.(3.3.9)]. [corrected by Wolfdieter Lang, Jan 09 2001]
a(n) ~ c * d^n / n^(5/2), where d = A246403 = 2.189461985660850..., c = 0.684447272004914061023163279794145361469033868145768075109924585532604582794... - Vaclav Kotesovec, Aug 25 2014

A007827 Number of homeomorphically irreducible (or series-reduced) trees with n pendant nodes, or continua with n non-cut points, or leaves.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 7, 13, 32, 73, 190, 488, 1350, 3741, 10765, 31311, 92949, 278840, 847511, 2599071, 8044399, 25082609, 78758786, 248803504, 790411028, 2523668997, 8095146289, 26076714609, 84329102797, 273694746208
Offset: 0

Views

Author

Matthew Cropper (mmcrop01(AT)athena.louisville.edu)

Keywords

Comments

Also, number of unrooted multifurcating tree shapes with n leaves [see Felsenstein].

References

  • M. Cropper, J. Combin. Math. Combin. Comp., Vol. 24 (1997), 177-184.
  • Joseph Felsenstein, Inferring Phylogenies. Sinauer Associates, Inc., 2004, p. 33 (Beware errors!).
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 62.
  • S. B. Nadler Jr., Continuum Theory, Academic Press.

Crossrefs

Cf. A000014 (series-reduced trees), A000055 (trees), A000311, A000669 (series-reduced planted trees by leaves), A059123 (homeomorphically irreducible rooted trees by nodes), A271205 (series-reduced trees by leaves and nodes).
Number of row entries of A064060.

Programs

  • Maple
    A := series(1+(1+x-B)*B,x,30); # where B = g.f. for A000669; A007827 := n->coeff(A,x,n);
  • Mathematica
    (* a9 = A000669 *) max = 29; a9[1] = 1; a9[n_] := (s = Series[1/(1 - x), {x, 0, n}]; Do[s = Series[s/(1 - x^k)^Coefficient[s, x^k], {x, 0, n}], {k, 2, n}]; Coefficient[s, x^n]/2); b[x_] := Sum[a9[n] x^n, {n, 1, max}]; gf[x_] := 1 + (1 + x - b[x])*b[x]; CoefficientList[ Series[gf[x], {x, 0, max}], x] (* Jean-François Alcover, Aug 14 2012 *)

Formula

G.f.: 1+(1+x-B(x))*B(x) where B(x) = x+x^2+2*x^3+5*x^4+12*x^5+33*x^6+90*x^7+... is g.f. for A000669.

Extensions

Corrected and extended by Christian G. Bower, Nov 15 1999

A271362 Number T(n,k) of series-reduced free trees with n nodes of which exactly k>=3 are leaves, k+1 <= n <= 2k-2.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 2, 4, 3, 1, 4, 6, 3, 1, 2, 10, 9, 4, 1, 8, 17, 12, 4, 1, 4, 22, 30, 16, 5, 1, 15, 47, 44, 20, 5, 1, 6, 53, 91, 67, 25, 6, 1, 32, 127, 158, 91, 30, 6, 1, 11, 121, 282, 258, 126
Offset: 4

Views

Author

Stephan Beyer, Apr 05 2016

Keywords

Comments

The length of row n is floor((n-2)/2).

Examples

			    Irregular triangle begins
    n \ k 3   4   5   6   7  8
     4     1;
     5     1;
     6     1,  1;
     7     1,  1;
     8     1,  2,  1;
     9     2,  2,  1;
    10     2,  4,  3,  1;
    11     4,  6,  3,  1;
    12     2, 10,  9,  4, 1;
    13     8, 17, 12,  4, 1;
    14     4, 22, 30, 16, 5, 1;
    15    15, 47, 44, 20, 5, 1;
    ...
		

Crossrefs

Transpose of A271205.
Cf. A000014 (row sums), A345971.

Programs

  • PARI
    \\ using files hitree4.txt etc from McKay.
    nL(n, Tr) = { my(E = strsplit(Tr, "  "), u_v, Deg = vectorsmall(n));
    for(j = 1, n-1, u_v = strsplit(E[j], " "); u_v = eval(u_v);
       Deg[ u_v[1]+1 ]++; Deg[ u_v[2]+1 ]++); sum(v = 1, n, Deg[v] == 1)
    };
    Rows(r1, r2) = {my(F, C, nF); for(n = r1, r2,
    F = readstr(Str("hitree", n, ".txt")); C = vectorsmall(n-1);
    for(i = 1, #F, nF = nL(n, F[i]); C[nF]++ );
    print1(n" "); for(i=1, #C, if(C[i] > 0, print1(C[i]", "))); print() )
    }; \\ Washington Bomfim, Jul 09 2021

Formula

T(n,k) = A271205(k,n).
Showing 1-3 of 3 results.