A267486 Triangle of coefficients of Gaussian polynomials [2n+7,6]_q represented as finite sum of terms (1+q^2)^k*q^(g-k), where k = 0,1,...,g with g=6n+3.
-1, -2, 1, 1, 0, 2, -2, -15, 7, 17, -5, -7, 1, 1, -2, -6, 25, 71, -80, -218, 126, 284, -106, -190, 48, 69, -11, -13, 1, 1, 0, 6, -12, -137, 196, 945, -811, -2745, 1602, 4163, -1780, -3711, 1193, 2059, -493, -722, 123, 156, -17, -19, 1, 1, -3, -12, 94, 358, -952, -3430, 4699, 15615, -13467, -39946, 24494, 63168, -29535, -65638, 24206, 46512, -13652, -22891, 5294, 7834, -1386, -1831, 234, 279, -23, -25, 1, 1
Offset: 0
Examples
-1,-2,1,1; 0,2,-2,-15,7,17,-5,-7,1,1; -2,-6,25,71,-80,-218,126,284,-106,-190,48,69,-11,-13,1,1;
Links
- Stephen O'Sullivan, Table of n, a(n) for n = 0..1343
- S. O'Sullivan, A class of high-order Runge-Kutta-Chebyshev stability polynomials, Journal of Computational Physics, 300 (2015), 665-678.
- Wikipedia, Gaussian binomial coefficients.
Programs
-
Maple
A267486 := proc (n, k) local y: y := expand(subs(t = 0, diff((1+t)*product(1+t^2+2*t*ChebyshevT(i, x/2), i = 1 .. n+3),t$6)/6!)): if k = 0 then subs(x = 0, y) else subs(x = 0, diff(y, x$k)/k!) end if: end proc: seq(seq(A267486(n, k), k = 0 .. 6*n+3), n = 0 .. 20);
-
Mathematica
row[n_] := 1/6! D[(1+t)*Product[1+t^2+2*t*ChebyshevT[i, x/2], {i, 1, n+1}], {t, 6}] /. t -> 0 // CoefficientList[#, x]&; Table[row[n], {n, 0, 20}] // Flatten (* From A267120 entry by Jean-François Alcover *)
Formula
G.f. for row polynomial: G(n,x) = (d^6/dt^6)((1+t)*Product_{i=1..n+1}(1+t^2+2t*T(i,x/2))/6!)|_{t=0}.
Extensions
Added row length
Comments