A256275 Decimal equivalent of the binary string generated by the negation of the n X n identity matrix.
0, 6, 238, 31710, 16510910, 34089189246, 280371153272574, 9205322385119247870, 1207744073945406663293950, 633515663914742881158342637566, 1328903397983747395279166325955489790, 11149011303623843458013522930838119932485630, 374121581799746201009538413109130562019709006364670
Offset: 1
Keywords
Examples
For n = 3, a(3) = 2^(3^2) - (1 + (2^((3+1)*(3-1)) + 2^((3+1)*(3-2)) + 2^((3+1)*(3-3)))) = 2^9 - (1 + (2^8 + 2^4 + 2^0)) = 512 - (1 + (256 + 16 + 1)) = 512 - 274 = 238.
Links
- Stuart Bruff, Table of n, a(n) for n = 1..26
Crossrefs
Cf. A119408.
Programs
-
Magma
[(2^(n^2)-2)*(1-2^n)/(1-2^(n+1)): n in [1..15]]; // Vincenzo Librandi, Jun 03 2015
-
Maple
seq((2^(n^2)-2)*(1-2^n)/(1-2^(n+1)),n=1..26); # Robert Israel, Jun 02 2015
-
Mathcad
2^(n^2) - (1 + Summation[k=1..n (2^((n+1).(n-k)))])
-
Mathematica
Table[2^(n^2) - (1 + Sum[2^((n + 1) (n - k)), {k, n}]), {n, 12}] (* Michael De Vlieger, Jun 02 2015 *)
Formula
a(n) = 2^(n^2) - (1 + (2^((n+1)*(n-1)) + 2^((n+1)*(n-2) + .. 1))).
a(n) = 2^(n^2) - (1 + A119408(n)).
a(n) = ((2^(n^2) - 2)*(2^n - 1))/(2*2^n - 1)