cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: T. V. Raziman

T. V. Raziman's wiki page.

T. V. Raziman has authored 2 sequences.

A319366 Number of 6 X n binary matrices such that any 2 rows have a common 1.

Original entry on oeis.org

1, 127, 14197, 1527655, 154708741, 14581420567, 1282928605477, 106281575400295, 8370106554738181, 632240233746846007, 46159332156459328357, 3278558540783856976135, 227767526682511220042821, 15545657368091391819871447, 1046175606578621216182684837
Offset: 1

Author

T. V. Raziman, Sep 17 2018

Keywords

Crossrefs

Formula

a(n) = 64^n - 15*48^n + 60*40^n - 15*36^n + 30*34^n - 6*33^n - 200*32^n - 180*30^n + 585*28^n + 45*27^n + 60*26^n + 150*25^n - 660*24^n - 360*23^n + 168*22^n - 585*21^n + 1245*20^n + 1665*19^n - 1965*18^n - 2100*17^n + 2170*16^n + 1325*15^n - 1770*14^n - 420*13^n + 1533*12^n - 1105*11^n + 435*10^n - 105*9^n + 15*8^n - 7^n (proved in the Quora answer).

A303050 Number of 2n-digit decimal numbers without leading zeros where each digit appears an even number of times.

Original entry on oeis.org

9, 252, 10944, 617472, 41457024, 3141499392, 259346018304, 22749987520512, 2082519895670784, 196336888097144832, 18885576885968830464, 1841197721072909156352, 181107406524439376953344, 17918621160090649673859072, 1779590652288735614991335424
Offset: 1

Author

T. V. Raziman, Apr 17 2018

Keywords

Examples

			For n=1, the a(1)=9 numbers are 11, 22, 33, ..., 88, 99.
For n=2, the a(2)=252 numbers are 1001, 1010, 1100, 1111, 1122, 1212, 1221, ..., 9988, 9999.
		

Programs

  • Mathematica
    LinearRecurrence[{220, -16368, 489280, -5395456, 14745600}, {9, 252, 10944, 617472, 41457024}, 20] (* Paolo Xausa, Mar 10 2024 *)

Formula

a(n) = 9/10 * 1/(2^10) * (2 * 10^(2n) + 20 * 8^(2n) + 90 * 6^(2n) + 240 * 4^(2n) + 420 * 2^(2n)) (proved in the Quora answers).
G.f.: -9 *(1111680*x^4 -229888*x^3 +11424*x^2 -192*x +1) *x / ((100*x-1) *(4*x-1) *(36*x-1) *(64*x-1) *(16*x-1)). - Alois P. Heinz, Apr 17 2018