A353195 Coefficients of the open mirror map of P2.
2, 5, 32, 286, 3038, 35870, 454880, 6073311, 84302270, 1206291308, 17687468032, 264593385735, 4024945917314, 62101640836955, 969921269646560, 15309505269479942, 243897741785306000, 3917478255634975373, 63381933612745811168, 1032176017566352265886, 16907912684907490828614
Offset: 1
Keywords
Links
- M. Aganagic, A. Klemm, and C. Vafa, Disk Instantons, Mirror Symmetry and the Duality Web, Z. Naturforsch. A57 (2002) 1-28; arXiv:hep-th/0105045, 2011.
- M. Aganagic and C. Vafa, Mirror Symmetry, D-Branes and Counting Holomorphic Discs, arXiv:hep-th/0012041, 2000.
- M. Carl, M. Pumperla, B. Siebert, A tropical view on Landau-Ginzburg Models
- K. Chan, A formula equating open and closed Gromov-Witten invariants and its applications to mirror symmetry, Pacific J. Math. 254 (2011) 275-293; arXiv:1006.3827 [math.SG], 2010-2012.
- K. Chan, S.-C. Lau, and H.-H. Tseng, Enumerative meaning of mirror maps for toric Calabi-Yau manifolds, Adv. Math. 244 (2013) 605-625; arXiv:1110.4439 [math.SG], 2011-2013.
- M. van Garrel, T. Graber, and H. Ruddat, Local Gromov-Witten invariants are log invariants, Adv. Math. 350, (2019), 860-876; arXiv:1712.05210 [math.AG], 2017-2019.
- T. Graber and E. Zaslow, Open-string Gromov-Witten invariants: calculations and a mirror “theorem”, Orbifolds in mathematics and physics, Contemp. Math. 310, AMS (2002), 107-121; arXiv:hep-th/0109075, 2001.
- T. Graefnitz, H. Ruddat, and E. Zaslow, The proper Landau-Ginzburg potential is the open mirror map; arXiv:2204.12249 [math.AG], 2022.
- M. Gross and B. Siebert, Local mirror symmetry in the tropics, Proc. Int. Congr. Math. Seoul (2014) Vol. II, 723-744; arXiv:1404.3585 [math.AG], 2014
- S.-C. Lau, N. C. Leung, and B. Wu, A relation for Gromov-Witten invariants of local Calabi-Yau threefolds, Math.Res. Lett. 18 (5), (2011), 943-956; arXiv:1006.3828 [math.AG], 2010.
- W. Lerche and P. Mayr, On N = 1 Mirror Symmetry for Open Type II Strings; arXiv:hep-th/0111113, 2001.
- G. Mikhalkin and K. Siegel, Ellipsoidal superpotentials and stationary descendants, arXiv:2307.13252 [math.SG] (2023).
Programs
-
SageMath
def M(n): z,Q = var('z,Q') a = [var(f'a{k}') for k in range(n+1)] b = [0,1] + [0 for k in range(2,n+1)] F = sum([(-1)^k/k*factorial(3*k)/factorial(k)^3*z^k for k in range(1,n+1)]) zQ = Q+sum([a[k]*Q^k for k in range(2,n+1)]) Qz = (zQ*exp(F(zQ))).taylor(Q,0,n) for k in range(2,n+1): b[k] = a[k].substitute(solve(Qz.coefficient(Q^k).substitute([a[i]==b[i] for i in range(k)]) == 0,a[k])) return exp(1/3*F).substitute(z==sum([b[k]*Q^k for k in range(n+1)])).taylor(Q,0,n)
Comments