A290322 Sum modulo n of all units u in Z/nZ such that Phi(5,u) is a unit, where Phi is the cyclotomic polynomial.
1, 0, 0, 4, 0, 0, 0, 0, 9, 1, 0, 0, 0, 3, 0, 0, 0, 0, 8, 0, 12, 0, 0, 20, 0, 0, 0, 0, 18, 1, 0, 24, 0, 14, 0, 0, 0, 0, 16, 1, 0, 0, 24, 9, 0, 0, 0, 0, 45, 0, 0, 0, 0, 14, 0, 0, 0, 0, 36, 1, 32, 0, 0, 13, 24, 0, 0, 0, 14, 1, 0, 0, 0, 15, 0, 28, 0, 0, 32, 0, 42, 0
Offset: 2
Links
- Robert Israel, Table of n, a(n) for n = 2..10000
Programs
-
Maple
with(numtheory): m:=5: for n from 2 to 100 do S:={}: for a from 1 to n-1 do if gcd(a,n)=1 and gcd(cyclotomic(m,a),n)=1 then S:={op(S),a}: fi: od: print(sum(op(i,S),i=1..nops(S)) mod n): od:
-
Mathematica
Table[Mod[Total@ Select[Range[n - 1], CoprimeQ[#, n] && CoprimeQ[Cyclotomic[5, #], n] &], n], {n, 83}] (* Michael De Vlieger, Jul 29 2017 *)
-
PARI
a(n) = sum(k=0, n-1, k*((gcd(n, k)==1) && (gcd(n, polcyclo(5, k))==1))) % n; \\ Michel Marcus, Jul 29 2017
Comments