A380049 Partial sums of A072203.
0, 1, 3, 4, 6, 7, 9, 12, 14, 15, 17, 20, 24, 27, 29, 30, 32, 35, 39, 44, 48, 51, 55, 58, 60, 61, 63, 66, 70, 75, 81, 88, 94, 99, 103, 106, 110, 113, 115, 116, 118, 121, 125, 130, 136, 141, 147, 154, 160, 167, 173, 180, 188, 195, 201, 206, 210, 213, 217, 220, 224, 227, 231, 234, 236
Offset: 1
Keywords
Links
- Vaclav Kotesovec, Plot of a(n) / (2*n^(3/2)/(-3*zeta(1/2))) for n = 1..1000000
Programs
-
Mathematica
Accumulate[Accumulate[Table[-LiouvilleLambda[n], {n, 2, 100}]]] (* Vaclav Kotesovec, Jan 15 2025 *)
-
PARI
f(n) = 1 - sum(i=1, n, (-1)^bigomega(i)); \\ A072203 a(n) = sum(k=1, n, f(k)); \\ Michel Marcus, Feb 06 2025
Formula
a(n) = Sum_{k=1..n} A072203(k).
Conjecture: The average value of a(n) is 2*n^(3/2)/(-3*zeta(1/2)). - Vaclav Kotesovec, Jan 15 2025