cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Tsuyoshi Hanatate

Tsuyoshi Hanatate's wiki page.

Tsuyoshi Hanatate has authored 2 sequences.

A380049 Partial sums of A072203.

Original entry on oeis.org

0, 1, 3, 4, 6, 7, 9, 12, 14, 15, 17, 20, 24, 27, 29, 30, 32, 35, 39, 44, 48, 51, 55, 58, 60, 61, 63, 66, 70, 75, 81, 88, 94, 99, 103, 106, 110, 113, 115, 116, 118, 121, 125, 130, 136, 141, 147, 154, 160, 167, 173, 180, 188, 195, 201, 206, 210, 213, 217, 220, 224, 227, 231, 234, 236
Offset: 1

Author

Tsuyoshi Hanatate, Jan 10 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[Accumulate[Table[-LiouvilleLambda[n], {n, 2, 100}]]] (* Vaclav Kotesovec, Jan 15 2025 *)
  • PARI
    f(n) = 1 - sum(i=1, n, (-1)^bigomega(i)); \\ A072203
    a(n) = sum(k=1, n, f(k)); \\ Michel Marcus, Feb 06 2025

Formula

a(n) = Sum_{k=1..n} A072203(k).
Conjecture: The average value of a(n) is 2*n^(3/2)/(-3*zeta(1/2)). - Vaclav Kotesovec, Jan 15 2025

A379742 a(n) is the number of divisors of A000178(n).

Original entry on oeis.org

1, 1, 2, 6, 18, 72, 234, 1088, 3600, 10416, 28080, 124080, 387828, 1921024, 6926400, 20941344, 54934880, 251328000, 810152280, 4254092800, 15266200950, 46208448000, 129674387920, 640501862400, 2197261252368, 6404827161600, 17436935577600, 43314231340800, 101062601640000, 436914124416000, 1355859833328000, 7074064925491200
Offset: 0

Author

Tsuyoshi Hanatate, Dec 31 2024

Keywords

Crossrefs

Programs

  • Mathematica
    DivisorSigma[0, FoldList[Times, Range[0, 30]!]] (* Paolo Xausa, Jan 06 2025 *)
  • PARI
    a(n)=numdiv(prod(k=1,n,k!));
    vector(30,n,a(n-1)) \\ Joerg Arndt, Jan 02 2025
    
  • PARI
    a(n) = {my(prd = 1); forprime(p = 2, n, prd *= (1 + (n*(n+1)/2 - 1 - sum(i = 2, n, sumdigits(i, p)))/(p-1))); prd;} \\ Amiram Eldar, Jan 15 2025

Formula

a(n) = A000005(A000178(n)).
a(n) = Product_{primes p <= n} (1 + (n*(n+1)/2 - 1 - Sum_{i=2..n} s_p(i))/(p-1)), where s_p(i) is the sum of digits of i in base p. - Amiram Eldar, Jan 15 2025