A278316 Odd numbers n such that q(n)^2 = q(n^2) != 0, where q(n) is the digit product on base 10.
1, 3, 661, 983, 2631, 2893, 12385, 12893, 14661, 18615, 27519, 35383, 36213, 38691, 46215, 49231, 83631, 87291, 92843, 113865, 116683, 123415, 129815, 136423, 139261, 152619, 161683, 162435, 166817, 178119, 194725, 244635, 247941, 254663, 274165, 276941
Offset: 1
Examples
For n=3, a(3)=661: q(661)^2 = (6*6*1)^2 = 36^2 = 1296 = 4*3*6*9*2*1 = q(436921) = q(661^2).
References
- Michael Huke, Solution to exercise psi-15 (German language article), WURZEL 11/2016, November 2016, page 252, http://wurzel.org/
Crossrefs
Odd terms of A256115. - Michel Marcus, Dec 04 2016
Programs
-
Mathematica
Select[Range[1, 10^6, 2], And[MatchQ @@ #, Times @@ # != 0] &@{(Times @@ IntegerDigits@ #)^2, Times @@ IntegerDigits[#^2]} &] (* Michael De Vlieger, Dec 06 2016 *)
-
PARI
pd(n) = my(d=digits(n)); prod(k=1, #d, d[k]); isok(n) = (n % 2) && (p = pd(n)^2) && (p == pd(n^2)); \\ Michel Marcus, Dec 04 2016
Extensions
More terms from Jon E. Schoenfield, Dec 02 2016
Comments