cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: William Halpin

William Halpin's wiki page.

William Halpin has authored 1 sequences.

A353138 Sum of (the number of digits in n to the power (each digit in n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 4, 6, 10, 18, 34, 66, 130, 258, 514, 5, 6, 8, 12, 20, 36, 68, 132, 260, 516, 9, 10, 12, 16, 24, 40, 72, 136, 264, 520, 17, 18, 20, 24, 32, 48, 80, 144, 272, 528, 33, 34, 36, 40, 48, 64, 96, 160, 288, 544, 65, 66, 68, 72, 80, 96
Offset: 1

Author

William Halpin, Apr 26 2022

Keywords

Comments

In base 10, 1 and 4624 are the only numbers where a(n)=n (conjectured).
a(n) < n when n > 2.1*(10^10).

Examples

			a(3) = 1^3 = 1;
a(164) = 3^1 + 3^6 + 3^4 = 813;
a(4624) = 4^4 + 4^6 + 4^2 + 4^4 = 4624.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local m,L,t;
      L:= convert(n,base,10);
      m:= nops(L);
      add(m^t, t=L)
    end proc:
    map(f, [$1..100]);
  • PARI
    a(n) = my(d=digits(n)); vecsum(vector(#d, k, #d^d[k])); \\ Michel Marcus, Apr 27 2022
  • Python
    def a(n): s = str(n); return sum(len(s)**int(d) for d in s)
    print([a(n) for n in range(1, 101)]) # Michael S. Branicky, Apr 26 2022
    

Formula

a(n) = Sum_{k=1..A055642(n)} (A055642(n))^(floor(n*10^(1-k)) mod 10).