cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Yang Haoran

Yang Haoran's wiki page.

Yang Haoran has authored 1 sequences.

A296009 Smallest number m such that (2n-1)*m has only odd digits.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 15, 5, 3, 5, 11, 1, 1, 1, 1, 1, 13, 13, 3, 11, 11, 1, 1, 1, 1, 1, 13, 5, 3, 5, 11, 1, 1, 1, 1, 1, 17, 11, 7, 11, 11, 1, 1, 1, 1, 1, 11, 5, 3, 5, 11, 1, 1, 1, 1, 1, 11, 11, 3, 11, 15, 1, 1, 1, 1, 1, 11, 5, 11, 5, 13
Offset: 1

Author

Yang Haoran, Dec 02 2017

Keywords

Comments

Record values:
1 * 1 = 1
21 * 15 = 315
81 * 17 = 1377
167 * 19 = 3173
169 * 33 = 5577
201 * 155 = 31155
633 * 283 = 179139
1011 * 743 = 751173
1101 * 833 = 917133
2001 * 1555 = 3111555
9091 * 4309 = 39173119
9901 * 32231 = 319119131
91001 * 34193 = 3111597193
100011 * 37927 = 3793117197
101001 * 58553 = 5913911553
200001 * 155555 = 31111155555
909091 * 431109 = 391917311919
990001 * 12121113 = 11999913991113
999001 * 31222311 = 31191119911311
... (above are exhaustive)
99990001 * 31122223111 = 3111911119991113111 (verified smallest)
9999900001 * 31112222231111 = 311119111119999111131111 (not verified smallest)

Examples

			For n = 11, 2n-1 = 21, 21*15 = 315 which has all odd digits.
For m = 1 to 14, n*m listed are 21, 42, 63, 84, 105, 126, 147, 168, 189, 210, 231, 252, 273, 294, all of which contains at least one even digit.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{m = 1, nn = 2n -1, od = {1, 3, 5, 7, 9}}, While[ Union@ Join[od, IntegerDigits[m*nn]] != od, m += 2]; m]; Array[f, 75] (* Robert G. Wilson v, Dec 05 2017 *)
  • PARI
    isok(n, m) = {my(d = digits((2*n-1)*m)); #select(x->((x%2)==0), d) == 0;}
    a(n) = {my(m=1); while (!isok(n, m), m++); m;} \\ Michel Marcus, Sep 24 2019

Formula

a(n) = A061808(n)/(2n-1).