A378234 From higher-order arithmetic progressions: Corrected version of A259461.
40, 5000, 472500, 43218000, 4148928000, 432081216000, 49509306000000, 6275893932000000, 881135508052800000, 136878615942868800000, 23474682634201999200000, 4432282735129048800000000, 918537831584839065600000000, 208281986149676045967360000000, 51516317681413623440962560000000
Offset: 0
Keywords
Links
- Karl Dienger, Beiträge zur Lehre von den arithmetischen und geometrischen Reihen höherer Ordnung, Jahres-Bericht Ludwig-Wilhelm-Gymnasium Rastatt, Rastatt, 1910. [Annotated scanned copy]
Programs
-
Maple
rV := proc(n,a,d) n*(n+1)/2*a+(n-1)*n*(n+1)/6*d; end proc: A259461 := proc(n) mul(rV(i,a,d),i=1..n+3) ; coeftayl(%,d=0,3) ; coeftayl(%,a=0,n) ; end proc: seq(A259461(n),n=1..5) ; # R. J. Mathar, Jul 14 2015
Formula
D-finite with recurrence: -2*n*(n+2)*a(n) + (n+4)^3*(n+5)*a(n-1) = 0.
a(n) = (n+5)!*(n+4)!^3 / (1296*2^(n+4)*n!^2*(n+2)*(n+1)).
Comments