cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: _Georg Fischer

_Georg Fischer's wiki page.

_Georg Fischer has authored 27 sequences. Here are the ten most recent ones:

A378234 From higher-order arithmetic progressions: Corrected version of A259461.

Original entry on oeis.org

40, 5000, 472500, 43218000, 4148928000, 432081216000, 49509306000000, 6275893932000000, 881135508052800000, 136878615942868800000, 23474682634201999200000, 4432282735129048800000000, 918537831584839065600000000, 208281986149676045967360000000, 51516317681413623440962560000000
Offset: 0

Author

Georg Fischer, Dec 16 2024

Keywords

Comments

Only the first 5 terms of A259461 are correct. - R. J. Mathar, Jul 14 2015
"2 over n!" on page 13 in the Dienger article is A006472; A_3 is A001303.

Crossrefs

Programs

  • Maple
    rV := proc(n,a,d)
        n*(n+1)/2*a+(n-1)*n*(n+1)/6*d;
    end proc:
    A259461 := proc(n)
        mul(rV(i,a,d),i=1..n+3) ;
        coeftayl(%,d=0,3) ;
        coeftayl(%,a=0,n) ;
    end proc:
    seq(A259461(n),n=1..5) ; # R. J. Mathar, Jul 14 2015

Formula

D-finite with recurrence: -2*n*(n+2)*a(n) + (n+4)^3*(n+5)*a(n-1) = 0.
a(n) = (n+5)!*(n+4)!^3 / (1296*2^(n+4)*n!^2*(n+2)*(n+1)).

A373101 Triangle read by rows, T(n,k) = (binomial(n,k)^3 - binomial(n,k))/6 for k=1..n-1 and n >= 2.

Original entry on oeis.org

1, 4, 4, 10, 35, 10, 20, 165, 165, 20, 35, 560, 1330, 560, 35, 56, 1540, 7140, 7140, 1540, 56, 84, 3654, 29260, 57155, 29260, 3654, 84, 120, 7770, 98770, 333375, 333375, 98770, 7770, 120, 165, 15180, 287980, 1543465, 2667126, 1543465, 287980, 15180, 165
Offset: 2

Author

Georg Fischer, May 23 2024

Keywords

Comments

This triangle was mentioned in A143420 with the wrong A-number A143419.

Examples

			T(n,k) for n=2..7:
   1;
   4,    4;
  10,   35,   10;
  20,  165,  165,   20;
  35,  560, 1330,  560,   35;
  56, 1540, 7140, 7140, 1540, 56;
		

Crossrefs

Programs

  • Maple
    seq(print(n,seq((binomial(n,k)^3 - binomial(n,k))/6,k=1..n-1)),n=2..10);

A363839 Numbers in the witch's multiplication table (German: "Hexeneinmaleins") in Goethe's Faust.

Original entry on oeis.org

1, 10, 2, 3, 4, 5, 6, 7, 8, 9, 1, 10, 0, 1
Offset: 1

Author

Georg Fischer, Jun 23 2023

Keywords

Comments

In German, the witch declaims the following magic spell to Faust:
Du mußt verstehn!
Aus Eins[1] mach' Zehn[10],
Und Zwey[2] laß gehn,
Und Drey[3] mach' gleich,
So bist du reich.
Verlier' die Vier[4]!
Aus Fünf[5] und Sechs[6],
So sagt die Hex',
Mach' Sieben[7] und Acht[8],
So ist's vollbracht:
Und Neun[9] ist Eins[1],
Und Zehn[10] ist keins[0].
Das ist das Hexen-Einmal-Eins[1]!
(The numbers in "[...]" do not apppear in the original.)
Literal translation into English:
You must understand!
From one make ten,
And two let go,
And three make equal,
So you are rich.
Lose the four!
From five and six,
So says the witch,
Make seven and eight,
So it is finished:
And nine is one,
And ten is none.
This is the Witch's one-times-one!
.
From Peter Luschny, Jun 23 2023: (Start)
Sometimes the witch's one-times-one is interpreted as a construction guide for a magic square, which describes a transformation like this:
1 2 3 4 9 2
4 5 6 -> 3 5 7
7 8 9 8 1 6
(End)

Crossrefs

A356686 Decimal expansion of the constant p^*_0 related to Shallit's constant (A086276).

Original entry on oeis.org

1, 4, 4, 7, 0, 5, 4, 3, 5, 0, 0, 1, 6, 2, 7, 9, 4, 0, 6, 5, 6, 4, 3, 6, 5, 3, 2, 0, 2, 2, 3, 2, 2, 1, 5, 0, 1, 3, 4, 5, 1, 1, 4, 7, 7, 6, 6, 0, 9, 9, 6, 3, 3, 5, 4, 1, 9, 1, 1, 6, 0, 4, 2, 6, 0, 9, 2, 8, 8, 8, 4, 5, 9, 4, 9, 5, 5, 3, 8, 1, 5
Offset: 1

Author

Georg Fischer, Aug 23 2022

Keywords

Comments

The constant is defined in Sadov's paper (equation 13).

Examples

			1.44705435001627940656436532022322150134511477660996...
		

Crossrefs

Cf. A086276.

A351524 Number of powers of 11 modulo n.

Original entry on oeis.org

1, 1, 2, 2, 1, 2, 3, 2, 6, 1, 2, 2, 12, 3, 2, 4, 16, 6, 3, 2, 6, 2, 22, 2, 5, 12, 18, 6, 28, 2, 30, 8, 3, 16, 3, 6, 6, 3, 12, 2, 40, 6, 7, 3, 6, 22, 46, 4, 21, 5, 16, 12, 26, 18, 2, 6, 6, 28, 58, 2, 4, 30, 6, 16, 12, 3, 66, 16, 22, 3, 70, 6, 72, 6, 10, 6, 4, 12, 39, 4, 54, 40, 41, 6, 16, 7, 28
Offset: 1

Author

Georg Fischer, Feb 13 2022

Keywords

Comments

This is the original version of A054711 rev. #1 as defined by Henry Bottomley, Apr 20 2000.
A054711 is now different from the sequence here.

Crossrefs

Cf. A054711.
Cf. A054703 (base 2), A054704 (3), A054705 (4), A054706 (5), A054707 (6), A054708 (7), A054709 (8), A054717 (9), A054710 (10), A054712 (12), A054713 (13), A054714 (14), A054715 (15), A054716 (16).

Programs

  • Mathematica
    a[n_] := Module[{e = IntegerExponent[n, 11]}, e + MultiplicativeOrder[11, n/11^e]]; Array[a, 100] (* Amiram Eldar, Aug 25 2024 *)

A341862 a(n) is the even term in the linear recurrence signature for numerators and denominators of continued fraction convergents to sqrt(n), or 0 if n is a square.

Original entry on oeis.org

0, 0, 2, 4, 0, 4, 10, 16, 6, 0, 6, 20, 14, 36, 30, 8, 0, 8, 34, 340, 18, 110, 394, 48, 10, 0, 10, 52, 254, 140, 22, 3040, 34, 46, 70, 12, 0, 12, 74, 50, 38, 64, 26, 6964, 398, 322, 48670, 96, 14, 0, 14, 100, 1298, 364, 970, 178, 30, 302, 198, 1060, 62, 59436
Offset: 0

Author

Georg Fischer, Feb 22 2021

Keywords

Comments

The Everest et al. link states that "the continued fraction expansion of a quadratic irrational is eventually periodic, which implies that the numerators px and denominators qx of its convergents satisfy linear recurrence relations".
Let k be the period length minus one of the continued fraction of sqrt(n). Then the linear recurrence signatures with constant coefficients have the form (0, 0, ..., 0, a(n), 0, 0, ..., 0, (-1)^(n+1)), with k zeroes before and behind a(n).
a(n) is twice the numerator of the convergent to sqrt(n) with index k (starting with 0).
These properties result from the mirrored structure of the period of such continued fractions.
The sequence has remarkably many terms in common with A180495 and with 2*A033313.

Examples

			The numerators for sqrt(13) begin with 3, 4, 7, 11, 18, 119, ... (A041018) and have the signature (0,0,0,0,36,0,0,0,0,1). The continued fraction has period [1,1,1,1,6], so k=4 and a(13) = 2*A041018(4) = 2*18 = 36. The signature ends with (-1)^4.
The numerators for sqrt(19) begin with 4, 9, 13, 48, 61, 170, 1421, ... (A041028) and have the signature (0,0,0,0,0,340,0,0,0,0,0,-1). The continued fraction has period [2,1,3,1,2,8], so k=5 and a(19) = 2*A041028(5) = 2*170 = 340. The signature ends with (-1)^5.
		

Crossrefs

Formula

a(n) = 2*A006702(n) if n is not square, otherwise 0.

A338207 Inverse permutation to A307048.

Original entry on oeis.org

2, 1, 14, 6, 4, 3, 8, 12, 20, 5, 122, 18, 10, 7, 50, 24, 38, 9, 32, 30, 16, 11, 26, 36, 56, 13, 68, 42, 22, 15, 104, 48, 74, 17, 176, 54, 28, 19, 44, 60, 92, 21, 1094, 66, 34, 23, 158, 72, 110, 25, 86, 78, 40, 27, 62, 84, 128, 29, 446, 90, 46, 31, 212, 96, 146, 33, 338, 102, 52, 35, 80, 108, 164, 37, 284, 114, 58, 39, 266
Offset: 1

Author

Georg Fischer, Oct 16 2020

Keywords

Comments

Permutation of the positive integers.

Crossrefs

Cf. A307048.

A338208 Inverse permutation to A322469.

Original entry on oeis.org

2, 3, 1, 16, 7, 14, 4, 17, 12, 8, 5, 15, 21, 33, 6, 126, 26, 13, 9, 69, 31, 50, 10, 124, 38, 22, 11, 34, 43, 67, 18, 127, 48, 27, 19, 122, 55, 86, 20, 70, 60, 32, 23, 51, 65, 103, 24, 125, 74, 39, 25, 179, 79, 120, 28, 287, 84, 44, 29, 68, 91, 143, 30, 1100, 96, 49, 35, 232, 101, 160, 36, 123, 108, 56, 37, 87, 113, 177, 40, 611
Offset: 1

Author

Georg Fischer, Oct 16 2020

Keywords

Comments

Permutation of the positive integers.
There is a hierarchy of such permutations derived by selecting and mapping the terms of the form 6*k - 2 to k:
Level 0: A307407
Level 1: A322469, inverse is A338208 (this sequence)
Level 2: A307048 A338207
Level 3: A160016 A338206
Level 4: A000027 (the positive integers)

A338206 Inverse of permutation in A160016.

Original entry on oeis.org

0, 2, 1, 6, 3, 10, 4, 14, 5, 18, 7, 22, 8, 26, 9, 30, 11, 34, 12, 38, 13, 42, 15, 46, 16, 50, 17, 54, 19, 58, 20, 62, 21, 66, 23, 70, 24, 74, 25, 78, 27, 82, 28, 86, 29, 90, 31, 94, 32, 98, 33, 102, 35, 106, 36, 110, 37, 114, 39, 118, 40, 122, 41, 126, 43, 130, 44, 134, 45, 138, 47, 142, 48, 146, 49, 150, 51, 154, 52, 158
Offset: 0

Author

Georg Fischer, Oct 16 2020

Keywords

Comments

Permutation of the nonnegative integers.

Crossrefs

Cf. A160016.

Programs

  • Maple
    gf := (x*(1 + x^2)*(2 + x + 2*x^2 + x^3 + 2*x^4))/((-1 + x)^2*(1 + x)^2*(1 - x + x^2)*(1 + x + x^2)): ser := series(gf, x, 82):
    seq(coeff(ser, x, n), n=0..79); # Peter Luschny, Oct 16 2020
  • Mathematica
    LinearRecurrence[{0,1,0,0,0,1,0,-1}, {0,2,1,6,3,10,4,14},80]
  • PARI
    my(x='x+O('x^80)); Vec((x*(2+x+4*x^2+2*x^3+4*x^4+x^5+2*x^6))/((1-x^2)^2*(1+x^2+x^4)))

Formula

Blocks of 6 numbers: a(6*k+0 .. 6*k+5) = (4*k+0, 12*k+2, 4*k+1, 12*k+6, 4*k+3, 12*k+10) for k >= 0.
O.g.f.: x*(1 + x^2)*(2 + x + 2*x^2 + x^3 + 2*x^4)/((1 - x^2)^2*(1 + x^2 + x^4)).
If n is odd, then a(n) = 2*n; otherwise, a(n) = nearest integer to 2*n/3. - Philippe Deléham, Nov 09 2023

A338186 Expansion of (2-6*x-12*x^2)/((1-x)^2*(1-9*x)).

Original entry on oeis.org

2, 16, 126, 1100, 9850, 88584, 797174, 7174468, 64570098, 581130752, 5230176622, 47071589436, 423644304746, 3812798742520, 34315188682470, 308836698142004, 2779530283277794, 25015772549499888, 225141952945498718, 2026277576509488172, 18236498188585393242, 164128483697268538856
Offset: 0

Author

Georg Fischer, Oct 15 2020

Keywords

Comments

The locally small terms 4^k in A322469 occur at the positions a(k) (for k = 0..9, and probably in general; cf. conjectures in A322469).

Examples

			A322469(a(4)) = A322469(9850) = 256 = 4^4.
		

Crossrefs

Cf. A322469.

Programs

  • Maple
    f:= gfun:-rectoproc({a(n)=11*a(n-1)-19*a(n-2)+9*a(n-3), a(0)=2, a(1)=16, a(2)=126}, a(n), remember): map(f, [$0..21]);
  • Mathematica
    CoefficientList[Series[(2-6*x-12*x^2)/((1-x)^2*(1-9*x)), {x,0,21}], x]
  • PARI
    my(x='x+O('x^22)); Vec((2-6*x-12*x^2)/((1-x)^2*(1-9*x)))

Formula

a(n) = 11*a(n-1) - 19*a(n-2) + 9*a(n-3) for n >= 3.