cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A000092 Let A(n) = #{(i,j,k): i^2 + j^2 + k^2 <= n}, V(n) = (4/3)Pi*n^(3/2), P(n) = A(n) - V(n); sequence gives values of n where |P(n)| sets a new record.

Original entry on oeis.org

1, 2, 5, 6, 14, 21, 29, 30, 54, 90, 134, 155, 174, 230, 234, 251, 270, 342, 374, 461, 494, 550, 666, 750, 810, 990, 1890, 2070, 2486, 2757, 2966, 3150, 3566, 3630, 4554, 4829, 5670, 5750, 8154, 8382, 8774, 8910, 10350, 10710, 15734, 15750, 16302, 17550
Offset: 1

Views

Author

Keywords

Comments

Indices n for which A210641(n) = A117609(n) - A210639(n) yields record values (in absolute value). - M. F. Hasler, Mar 26 2012

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    P[n_] := Sum[SquaresR[3, k], {k, 0, n}] - Round[(4/3)*Pi*n^(3/2)]; record = 0; A000092 = Reap[For[n=1, n <= 2*10^4, n++, If[(p = Abs[P[n]]) > record, record = p; Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Feb 04 2016, after M. F. Hasler *)
  • PARI
    m=0; for(n=1,1e4, if(m+0A210641(n)),m),print1(n",")))  /* Start with n=0 to print the initial 0. */ \\ M. F. Hasler, Mar 26 2012

Extensions

Revised Jun 28 2005

A000223 Let A(n) = #{(i,j,k): i^2 + j^2 + k^2 <= n}, V(n) = (4/3)Pi*n^(3/2), P(n) = A(n) - V(n); A000092 gives values of n where |P(n)| sets a new record; sequence gives (nearest integer to, I believe) P(A000092(n)).

Original entry on oeis.org

3, 7, 10, 19, 32, 34, 37, 51, 81, 119, 122, 134, 157, 160, 161, 174, 221, 252, 254, 294, 305, 309, 364, 371, 405, 580, 682, 734, 756, 763, 776, 959, 1028, 1105, 1120, 1170, 1205, 1550, 1570, 1576, 1851, 1930, 2028, 2404, 2411, 2565, 2675, 2895, 2905, 2940, 3133, 3211, 3240, 3428
Offset: 1

Views

Author

Keywords

Comments

Record values of (absolute values of) A210641 = A117609-A210639. It appears that the records occur always at positive elements of that sequence. (One could add an initial a(0)=1.) - M. F. Hasler, Mar 26 2012

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    nmax = 3*10^4; P[n_] := Sum[SquaresR[3, k], {k, 0, n}] - Round[(4/3)*Pi* n^(3/2)]; record = 0; A000223 = Reap[For[n = 1, n <= nmax, n++, If[(p = Abs[pn = P[n]]) > record, record = p; Print[pn]; Sow[pn]]]][[2, 1]] (* Jean-François Alcover, Feb 05 2016 *)
  • PARI
    m=0;for(n=0,1e4, mA210641(n)) & print1(m=A210641(n)",")) /* This would print a negative value in case the record in absolute value occured for A117609(n)<A210639(n), which does not happen for n<10^4. */ \\ M. F. Hasler, Mar 26 2012

Formula

a(n) = |A210641(A000092(n))|. - M. F. Hasler, Mar 26 2012

Extensions

Revised Jun 28 2005

A000099 Let A(n) = #{(i,j): i^2 + j^2 <= n}, V(n) = Pi*n, P(n) = A(n) - V(n); sequence gives values of n where |P(n)| sets a new record.

Original entry on oeis.org

1, 2, 5, 10, 20, 24, 26, 41, 53, 130, 149, 205, 234, 287, 340, 410, 425, 480, 586, 840, 850, 986, 1680, 1843, 2260, 2591, 3023, 3024, 3400, 3959, 3960, 5182, 5183, 7920, 9796, 11233, 14883, 15119, 15120, 19593, 21600, 21603, 21604, 22177, 28559, 28560
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    nmax = 3*10^4; A[n_] := 1 + 4*Floor[Sqrt[n]] + 4*Floor[Sqrt[n/2]]^2 + 8* Sum[Floor[Sqrt[n - j^2]], {j, Floor[Sqrt[n/2]]+1, Floor[Sqrt[n]]}]; V[n_] := Pi*n; P[n_] := A[n] - V[n]; record = 0; A000099 = Reap[For[k = 0; n = 1, n <= nmax, n++, p = Abs[P[n]]; If[p > record, record = p; k++; Sow[n]; Print["a(", k, ") = ", n];]]][[2, 1]] (* Jean-François Alcover, Feb 03 2016 *)

Extensions

Entry revised by N. J. A. Sloane, Jun 26 2005

A000323 Let A(n) = #{(i,j): i^2 + j^2 <= n}, V(n) = Pi*n, P(n) = A(n) - V(n); A000099 gives values of n where |P(n)| sets a new record; sequence gives A(A000099(n)).

Original entry on oeis.org

5, 9, 21, 37, 69, 69, 89, 137, 177, 421, 481, 657, 749, 885, 1085, 1305, 1353, 1489, 1861, 2617, 2693, 3125, 5249, 5761, 7129, 8109, 9465, 9465, 10717, 12401, 12401, 16237, 16237, 24833, 30725, 35237, 46701, 47441, 47441, 61493, 67797, 67805, 67805
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    nmax = 3*10^4; A[n_] := 1 + 4*Floor[Sqrt[n]] + 4*Floor[Sqrt[n/2]]^2 + 8* Sum[Floor[Sqrt[n - j^2]], {j, Floor[Sqrt[n/2]] + 1, Floor[Sqrt[n]]}]; V[n_] := Pi*n; P[n_] := A[n] - V[n]; record = 0; A000099 = Reap[For[k = 0; n = 1, n <= nmax, n++, p = Abs[P[n]]; If[p > record, record = p; k++; Sow[an = A[n]]; Print["a(", k, ") = ", an];]]][[2, 1]] (* Jean-François Alcover, Feb 07 2016*)

Extensions

Entry revised Jun 28 2005

A000413 Let A(n) = #{(i,j,k): i^2 + j^2 + k^2 <= n}, V(n) = (4/3)*Pi*n^(3/2), P(n) = A(n) - V(n); A000092 gives values of n where |P(n)| sets a new record; sequence gives A(A000092(n)).

Original entry on oeis.org

1, 7, 19, 57, 81, 251, 437, 691, 739, 1743, 3695, 6619, 8217, 9771, 14771, 15155, 16831, 18805, 26745, 30551, 41755, 46297, 54339, 72359, 86407, 96969, 131059, 344859, 395231, 519963, 607141, 677397, 741509, 893019, 917217, 1288415, 1406811, 1789599, 1827927, 3085785, 3216051, 3444439, 3524869
Offset: 0

Views

Author

Keywords

Comments

The initial value a(0) = 1 corresponds to an initial A000092(0) = 0 which is the index of a record in the sense that the value P(0) = 0 is larger than all preceding values, because there are none. - M. F. Hasler, May 04 2022

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A117609 (A(n) in name).

Programs

  • Mathematica
    P[n_] := (s = Sum[SquaresR[3, k], {k, 0, n}]) - Round[(4/3)*Pi*n^(3/2)]; record = 0; A000092 = Reap[For[n = 0, n <= 10^4, n++, If[(p = Abs[P[n]]) > record, record = p; Print[s]; Sow[s]]]][[2, 1]] (* Jean-François Alcover, Feb 08 2016, after M. F. Hasler in A000092 *)

Formula

a(n) = A117609(A000092(n)), considering A000092(0) = 0. - M. F. Hasler, May 04 2022

Extensions

Revised Jun 28 2005
a(37)-a(42) from Vincenzo Librandi, Aug 21 2016

A111198 Numbers k such that sequence A_k does not contain a perfect square.

Original entry on oeis.org

37, 40, 43, 57, 58, 101
Offset: 1

Views

Author

Zak Seidov, Oct 24 2005

Keywords

Comments

That is, the complete sequence A_k, not just the terms that are shown in the entry, does not contain a perfect square or the negative of a perfect square. (In particular, sequences containing 0 or 1 are excluded.)
No more terms up through 130. Does A000131 contain a perfect square?
I've checked A000131 up to a(25000) and can report that I found no perfect square. - Robert G. Wilson v, Jun 23 2014

Examples

			The first term, 37, refers to the sequence A000037, the nonsquares. All of A000001-A000036 contain obvious square terms.
The second term, 40, refers to A000040, the primes. Obviously any sequence which is a subset of the primes (e.g. A000043) also gives a term.
		

Extensions

Let's have no more sequences of this type! - N. J. A. Sloane, Oct 23 2005
Showing 1-6 of 6 results.