cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A000223 Let A(n) = #{(i,j,k): i^2 + j^2 + k^2 <= n}, V(n) = (4/3)Pi*n^(3/2), P(n) = A(n) - V(n); A000092 gives values of n where |P(n)| sets a new record; sequence gives (nearest integer to, I believe) P(A000092(n)).

Original entry on oeis.org

3, 7, 10, 19, 32, 34, 37, 51, 81, 119, 122, 134, 157, 160, 161, 174, 221, 252, 254, 294, 305, 309, 364, 371, 405, 580, 682, 734, 756, 763, 776, 959, 1028, 1105, 1120, 1170, 1205, 1550, 1570, 1576, 1851, 1930, 2028, 2404, 2411, 2565, 2675, 2895, 2905, 2940, 3133, 3211, 3240, 3428
Offset: 1

Views

Author

Keywords

Comments

Record values of (absolute values of) A210641 = A117609-A210639. It appears that the records occur always at positive elements of that sequence. (One could add an initial a(0)=1.) - M. F. Hasler, Mar 26 2012

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    nmax = 3*10^4; P[n_] := Sum[SquaresR[3, k], {k, 0, n}] - Round[(4/3)*Pi* n^(3/2)]; record = 0; A000223 = Reap[For[n = 1, n <= nmax, n++, If[(p = Abs[pn = P[n]]) > record, record = p; Print[pn]; Sow[pn]]]][[2, 1]] (* Jean-François Alcover, Feb 05 2016 *)
  • PARI
    m=0;for(n=0,1e4, mA210641(n)) & print1(m=A210641(n)",")) /* This would print a negative value in case the record in absolute value occured for A117609(n)<A210639(n), which does not happen for n<10^4. */ \\ M. F. Hasler, Mar 26 2012

Formula

a(n) = |A210641(A000092(n))|. - M. F. Hasler, Mar 26 2012

Extensions

Revised Jun 28 2005

A000413 Let A(n) = #{(i,j,k): i^2 + j^2 + k^2 <= n}, V(n) = (4/3)*Pi*n^(3/2), P(n) = A(n) - V(n); A000092 gives values of n where |P(n)| sets a new record; sequence gives A(A000092(n)).

Original entry on oeis.org

1, 7, 19, 57, 81, 251, 437, 691, 739, 1743, 3695, 6619, 8217, 9771, 14771, 15155, 16831, 18805, 26745, 30551, 41755, 46297, 54339, 72359, 86407, 96969, 131059, 344859, 395231, 519963, 607141, 677397, 741509, 893019, 917217, 1288415, 1406811, 1789599, 1827927, 3085785, 3216051, 3444439, 3524869
Offset: 0

Views

Author

Keywords

Comments

The initial value a(0) = 1 corresponds to an initial A000092(0) = 0 which is the index of a record in the sense that the value P(0) = 0 is larger than all preceding values, because there are none. - M. F. Hasler, May 04 2022

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A117609 (A(n) in name).

Programs

  • Mathematica
    P[n_] := (s = Sum[SquaresR[3, k], {k, 0, n}]) - Round[(4/3)*Pi*n^(3/2)]; record = 0; A000092 = Reap[For[n = 0, n <= 10^4, n++, If[(p = Abs[P[n]]) > record, record = p; Print[s]; Sow[s]]]][[2, 1]] (* Jean-François Alcover, Feb 08 2016, after M. F. Hasler in A000092 *)

Formula

a(n) = A117609(A000092(n)), considering A000092(0) = 0. - M. F. Hasler, May 04 2022

Extensions

Revised Jun 28 2005
a(37)-a(42) from Vincenzo Librandi, Aug 21 2016

A117609 Number of lattice points inside the ball x^2 + y^2 + z^2 <= n.

Original entry on oeis.org

1, 7, 19, 27, 33, 57, 81, 81, 93, 123, 147, 171, 179, 203, 251, 251, 257, 305, 341, 365, 389, 437, 461, 461, 485, 515, 587, 619, 619, 691, 739, 739, 751, 799, 847, 895, 925, 949, 1021, 1021, 1045, 1141, 1189, 1213, 1237, 1309, 1357, 1357, 1365, 1419, 1503
Offset: 0

Views

Author

John L. Drost, Apr 06 2006

Keywords

Examples

			a(2) = 1 + 6 + 12 = 19, since (0,0,0) and (0, 0, +-1) and cyclic permutations (for a total of 6 points), and +-(0, 1, +-1) and cyclic permutations (for a total 12 points) are inside or on x^2 + y^2 + z^2 = 2.
		

Crossrefs

Partial sums of A005875.
Cf. A000605 (number of points of norm <= n in cubic lattice).
Cf. A210639, A000092 and references therein.
Cf. A057655.

Programs

  • Mathematica
    Table[Sum[SquaresR[3,k], {k,0,n}], {n,0,50}] (* T. D. Noe, Apr 08 2006, revised Sep 27 2011 *)
  • PARI
    A117609(n)=sum(x=0,sqrtint(n),(sum(y=1,sqrtint(t=n-x^2),1+2*sqrtint(t-y^2))*2+sqrtint(t)*2+1)*2^(x>0)) \\ M. F. Hasler, Mar 26 2012
    
  • PARI
    q='q+O('q^66); Vec((eta(q^2)^5/(eta(q)^2*eta(q^4)^2))^3/(1-q)) /* Joerg Arndt, Apr 08 2013 */
    
  • Python
    # uses Python code for A057655
    from math import isqrt
    def A117609(n): return A057655(n)+(sum(A057655(n-k**2) for k in range(1,isqrt(n)+1))<<1) # Chai Wah Wu, Jun 23 2024

Formula

a(n) ~ (4/3)*Pi*n^(3/2) ~ A210639(n).
a(n) = A122510(3,n). - R. J. Mathar, Apr 21 2010
G.f.: T3(q)^3/(1-q) where T3(q) = 1 + 2*Sum_{k>=1} q^(k^2). - Joerg Arndt, Apr 08 2013
a(n^2) = A000605(n). - R. J. Mathar, Aug 03 2025

A000036 Let A(n) = #{(i,j): i^2 + j^2 <= n}, V(n) = Pi*n, P(n) = A(n) - V(n); A000099 gives values of n where |P(n)| sets a new record; sequence gives closest integer to P(A000099(n)).

Original entry on oeis.org

2, 3, 5, 6, 6, -6, 7, 8, 10, 13, 13, 13, 14, -17, 17, 17, 18, -19, 20, -22, 23, 27, -29, -29, 29, -31, -32, -35, 36, -37, -40, -43, -46, -48, -50, -53, -55, -57, -60, -60, -61, -63, -66, -66, -68, -71, -74, -77, -79, -82, -85, -88, -89, -92, -95, -96, -97, -97, -100
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    nmax = 6*10^4; A[n_] := 1 + 4*Floor[Sqrt[n]] + 4*Floor[Sqrt[n/2]]^2 + 8* Sum[Floor[Sqrt[n - j^2]], {j, Floor[Sqrt[n/2]] + 1, Floor[Sqrt[n]]}]; V[n_] := Pi*n; P[n_] := A[n] - V[n]; record = 0; A000036 = Reap[For[k = 0; n = 1, n <= nmax, n++, p = Abs[pn = P[n]]; If[p > record, record = p; k++; Sow[pn // Round]; Print["a(", k, ") = ", pn // Round]]]][[2, 1]] (* Jean-François Alcover, Feb 03 2016 *)

Formula

a(n) = round(P(A000099(n))), where P(n) = A057655(n)-pi*n. - David W. Wilson, May 15 2008

Extensions

Revised by N. J. A. Sloane, Jun 26 2005
More terms from David W. Wilson, May 15 2008

A000099 Let A(n) = #{(i,j): i^2 + j^2 <= n}, V(n) = Pi*n, P(n) = A(n) - V(n); sequence gives values of n where |P(n)| sets a new record.

Original entry on oeis.org

1, 2, 5, 10, 20, 24, 26, 41, 53, 130, 149, 205, 234, 287, 340, 410, 425, 480, 586, 840, 850, 986, 1680, 1843, 2260, 2591, 3023, 3024, 3400, 3959, 3960, 5182, 5183, 7920, 9796, 11233, 14883, 15119, 15120, 19593, 21600, 21603, 21604, 22177, 28559, 28560
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    nmax = 3*10^4; A[n_] := 1 + 4*Floor[Sqrt[n]] + 4*Floor[Sqrt[n/2]]^2 + 8* Sum[Floor[Sqrt[n - j^2]], {j, Floor[Sqrt[n/2]]+1, Floor[Sqrt[n]]}]; V[n_] := Pi*n; P[n_] := A[n] - V[n]; record = 0; A000099 = Reap[For[k = 0; n = 1, n <= nmax, n++, p = Abs[P[n]]; If[p > record, record = p; k++; Sow[n]; Print["a(", k, ") = ", n];]]][[2, 1]] (* Jean-François Alcover, Feb 03 2016 *)

Extensions

Entry revised by N. J. A. Sloane, Jun 26 2005

A000323 Let A(n) = #{(i,j): i^2 + j^2 <= n}, V(n) = Pi*n, P(n) = A(n) - V(n); A000099 gives values of n where |P(n)| sets a new record; sequence gives A(A000099(n)).

Original entry on oeis.org

5, 9, 21, 37, 69, 69, 89, 137, 177, 421, 481, 657, 749, 885, 1085, 1305, 1353, 1489, 1861, 2617, 2693, 3125, 5249, 5761, 7129, 8109, 9465, 9465, 10717, 12401, 12401, 16237, 16237, 24833, 30725, 35237, 46701, 47441, 47441, 61493, 67797, 67805, 67805
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    nmax = 3*10^4; A[n_] := 1 + 4*Floor[Sqrt[n]] + 4*Floor[Sqrt[n/2]]^2 + 8* Sum[Floor[Sqrt[n - j^2]], {j, Floor[Sqrt[n/2]] + 1, Floor[Sqrt[n]]}]; V[n_] := Pi*n; P[n_] := A[n] - V[n]; record = 0; A000099 = Reap[For[k = 0; n = 1, n <= nmax, n++, p = Abs[P[n]]; If[p > record, record = p; k++; Sow[an = A[n]]; Print["a(", k, ") = ", an];]]][[2, 1]] (* Jean-François Alcover, Feb 07 2016*)

Extensions

Entry revised Jun 28 2005

A210639 Nearest integer to (4/3)*Pi*n^(3/2).

Original entry on oeis.org

0, 4, 12, 22, 34, 47, 62, 78, 95, 113, 132, 153, 174, 196, 219, 243, 268, 294, 320, 347, 375, 403, 432, 462, 492, 524, 555, 588, 621, 654, 688, 723, 758, 794, 830, 867, 905, 943, 981, 1020, 1060, 1100, 1140, 1181, 1223, 1264, 1307, 1350, 1393, 1437, 1481
Offset: 0

Views

Author

M. F. Hasler, Mar 26 2012

Keywords

Comments

Approximates the volume of the ball { (x,y,z) | x^2+y^2+z^2 < n }. Provides a more refined scale than A002101(n) = a(n^2).

Crossrefs

Cf. A000092 and references therein.

Programs

  • Mathematica
    Table[Round[4/3*Pi* n^(3/2)],{n,0,50}] (* Harvey P. Dale, Aug 04 2020 *)
  • PARI
    a(n)=round(4/3*Pi*n^1.5)

A210641 A117609(n)-A210639(n): Difference between number of lattice points in the ball x^2+y^2+z^2 <= n and the volume of this ball rounded to the nearest integer.

Original entry on oeis.org

1, 3, 7, 5, -1, 10, 19, 3, -2, 10, 15, 18, 5, 7, 32, 8, -11, 11, 21, 18, 14, 34, 29, -1, -7, -9, 32, 31, -2, 37, 51, 16, -7, 5, 17, 28, 20, 6, 40, 1, -15, 41, 49, 32, 14, 45, 50, 7, -28, -18, 22, 25, 4, 31, 81, 34, 36, 36, 13, 37, -12, 11, 58, 8, -36, 10, 55
Offset: 0

Views

Author

M. F. Hasler, Mar 26 2012

Keywords

Comments

Record values are listed in A000223, and A000092 gives the corresponding indices. Strictly speaking, these are defined using the absolute values, but it appears they always occur at positive elements.

Programs

Showing 1-8 of 8 results.