A000089 Number of solutions to x^2 + 1 == 0 (mod n).
1, 1, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0
Offset: 1
Examples
G.f. = x + x^2 + 2*x^5 + 2*x^10 + 2*x^13 + 2*x^17 + 2*x^25 + 2*x^26 + 2*x^29 + ...
References
- Michael Baake, "Solution of the coincidence problem in dimensions d <= 4", in R. V. Moody, ed., Mathematics of Long-Range Aperiodic Order, Kluwer, 1997, pp. 9-44.
- Goro Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton, 1971, see p. 25, Eq. (2).
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000 (terms 1..2000 from T. D. Noe)
- Michael Baake, Solution of the coincidence problem in dimensions d <= 4, arxiv:math/0605222 [math.MG] (2006).
- Michael Baake and Uwe Grimm, Quasicrystalline combinatorics, 2002.
- Harriet Fell, Morris Newman, and Edward Ordman, Tables of genera of groups of linear fractional transformations, J. Res. Nat. Bur. Standards Sect. B 67B 1963 61-68.
- Steven R. Finch and Pascal Sebah, Squares and Cubes Modulo n, arXiv:math/0604465 [math.NT], 2006-2016.
- John S. Rutherford, Sublattice enumeration. IV. Equivalence classes of plane sublattices by parent Patterson symmetry and colour lattice group type, Acta Cryst. (2009). A65, 156-163. [See Table 4].
- N. J. A. Sloane, Transforms
- László Tóth, Counting Solutions of Quadratic Congruences in Several Variables Revisited, J. Int. Seq. 17 (2014), Article 14.11.6.
Programs
-
Haskell
a000089 n = product $ zipWith f (a027748_row n) (a124010_row n) where f 2 e = if e == 1 then 1 else 0 f p _ = if p `mod` 4 == 1 then 2 else 0 -- Reinhard Zumkeller, Mar 24 2012
-
Maple
with(numtheory); A000089 := proc (n) local i, s; if modp(n,4) = 0 then RETURN(0) fi; s := 1; for i in divisors(n) do if isprime(i) and i > 2 then s := s*(1+eval(legendre(-1,i))) fi od; s end: # Gene Ward Smith, May 22 2006
-
Mathematica
Array[ Function[ n, If[ EvenQ[ n ] || Mod[ n, 3 ]==2, 0, Count[ Array[ Mod[ #^2+1, n ]&, n, 0 ], 0 ] ] ], 84 ] a[ n_] := If[ n < 1, 0, Length @ Select[ (#^2 + 1)/n & /@ Range[n], IntegerQ]]; (* Michael Somos, Aug 15 2015 *) a[n_] := a[n] = Product[{p, e} = pe; Which[p<3 && e==1, 1, p==2 && e>1, 0, Mod[p, 4]==1, 2, Mod[p, 4]==3, 0, True, a[p^e]], {pe, FactorInteger[n]}]; Array[a, 105] (* Jean-François Alcover, Oct 18 2018, after David W. Wilson *)
-
PARI
{a(n) = if( n<1, 0, sum( x=0, n-1, (x^2 + 1)%n==0))}; \\ Michael Somos, Mar 24 2012
-
PARI
a(n)=my(o=valuation(n,2),f);if(o>1,0,n>>=o;f=factor(n)[,1]; prod(i=1,#f,kronecker(-1,f[i])+1)) \\ Charles R Greathouse IV, Jul 08 2013
-
Python
from math import prod from sympy import primefactors def A000089(n): return prod(1 if p==2 else 2 if p&3==1 else 0 for p in primefactors(n)) if n&3 else 0 # Chai Wah Wu, Oct 13 2024
Formula
a(n) = 0 if 4|n, else a(n) = Product_{ p | N } (1 + Legendre(-1, p) ), where we use the definition that Legendre(-1, 2) = 0, Legendre(-1, p) = 1 if p == 1 mod 4, = -1 if p == 3 mod 4. This is Shimura's definition, which is different from Maple's.
Dirichlet g.f.: (1+2^(-s))*Product (1+p^(-s))/(1-p^(-s)) (p=1 mod 4).
Multiplicative with a(p^e) = 1 if p = 2 and e = 1; 0 if p = 2 and e > 1; 2 if p == 1 (mod 4); 0 if p == 3 (mod 4). - David W. Wilson, Aug 01 2001
a(3*n) = a(4*n) = a(4*n + 3) = 0. a(4*n + 1) = A031358(n). - Michael Somos, Mar 24 2012
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 3/(2*Pi) = 0.477464... (A093582). - Amiram Eldar, Oct 11 2022
Comments